I know how to write down solutions of wave equation
\partial^2_t u(t,x) = \partial^2_x u(t,x)
for given initial u(0,x) and \partial_t u(0,x) like this
u(t,x) = \frac{1}{2}\Big( u(0,x+t) + u(0,x-t) + \int\limits^{x+t}_{x-t} \partial_t u(0,y) dy\Big),
but what about
\partial^2_t u(t,x) =...