A motor design to defy Lenz' law?

AI Thread Summary
The discussion centers on a proposed motor design that features two electrically isolated rotors rotating along the same axis. The left rotor's movement generates currents in the right rotor, which is connected to a variable load. Concerns are raised about whether the magnetic fields of both rotors could cancel each other out, potentially negating Lenz's law effects on the generator side. However, it is emphasized that the opposing magnetic field from induced currents makes it difficult to rotate the generator rotor. The thread is ultimately closed due to the prohibition of challenges to established scientific principles.
Narayanan KR
Messages
76
Reaction score
4
motor design.png

1. The two rotors (purple, green) are electricaly isolated but mechanically fit to rotate along same axis
2. The motor action on the left side rotor will move the armature set, this will produce currents in right side rotor that will pass via a variable load.
3. do you see the magnetic fields of both rotors cancelling each other especially when the no. of turns are large
4. will this cancel lenz effect on generator side or both sides?
 
Engineering news on Phys.org
You have a motor-generator pair and it does not even transform the voltage. Any time you cut magnetic flux with a conductor connected to a load such as the right side of your drawing you will have an opposing force on said conductor. In other words, it gets harder to push the conductor through. A heads up: Discussion of things of this nature are prohibited on PF. Thought I would explain why your scheme won't work though.
 
it is difficult to move rotor of generator because the magnetic field of induced current is opposing the rotation (lenz law) , but if that magnetic field is canceled by another adjecent rotor, then the question is will the generator rotor move freely in the field (the diagram shows only half a turn in each rotor, so please imagine more turns) .
 
Thread closed for Moderation...
 
Narayanan KR said:
it is difficult to move rotor of generator because the magnetic field of induced current is opposing the rotation (lenz law) , but if that magnetic field is canceled by another adjecent rotor, then the question is will the generator rotor move freely in the field (the diagram shows only half a turn in each rotor, so please imagine more turns) .
Your thread will remain closed. We do not allow challenges to mainstream science here. We do allow sincere questions about basic E&M, with the intent being understanding E&M better. Please PM me if you want to continue this discussion. It is too big of a potential waste of time to leave as a general discussion item. Thank you.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top