Calculating Initial Height of a Falling Safe on a Spring

AI Thread Summary
To calculate the initial height of a falling safe above a spring, conservation of energy is key. The gravitational potential energy of the safe before it falls can be expressed as m*g*h, while after the fall, the energy is a combination of the spring's potential energy, (1/2)*k*Δs^2, and the remaining gravitational potential energy. The gravitational force (Fg) and spring force (Fs) have been calculated, but the next step involves equating the total energy before and after the impact. It's important to include the total change in gravitational potential energy in the calculations. This approach will lead to determining the initial height (d) of the safe.
Abdurrr
Messages
1
Reaction score
0

Homework Statement


A safe (mass = 1.00*10^3 kg) is suspended a height (d) above the top end of the spring (spring constant = 27800 N/m). The rope holding the safe breaks and the safe falls, compressing the spring a total distance of 1.80 m.
What is the initial height (d) of the safe when it was suspended above the spring?

Homework Equations


F = ma
Fs = -kx
Fg = mg

The Attempt at a Solution


I have only calculated Fg (9800N) and Fs (50,040N). I don't know where to go from here to get the height. Any help is appreciated, thank you.
 
Physics news on Phys.org
Hi Abdurrr,

Welcome to Physics Forums!

Hint: Consider conservation of energy. :wink:
 
One way to do this is with conservation of energy. Has your course explained about the energy in a compressed spring?
 
This is an impact situation, so it is most unlikely that energy is truly conserved. That said, conservation of energy is still a good approach, particularly if the mass of the spring is relatively small. Be sure to include the total change in gravitational potential energy, both before and after the impact, when doing the calculation.
 
It would be easiest to solve this using forms of energy - at the top, before the safe falls and it's hanging from a rope, the system has only Potential Energy - Gravitational (formula: m*g*h). Once it falls, after it has compressed the spring, it has Potential Energy - Spring (formula: (1/2)*k*Δs^2). K being spring constant, Δs is change in spring deformation.
 
Remember, it aso has gravitational energy after it has compressed the spring.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top