Convergence in distribution example

AlexF
Messages
2
Reaction score
0

Homework Statement


prob.png


Homework Equations


[/B]
Definition: A sequence X_1,X_2,\dots of real-valued random variables is said to converge in distribution to a random variable X if \lim_{n\rightarrow \infty}F_{n}(x)=F(x) for all x\in\mathbb{R} at which F is continuous. Here F_n, F are the cumulative distributions functions of the random variables X_n and X respectively.

The Attempt at a Solution



I'm trying to understand/recreate the following solution to the problem.

prob1.png


My working so far is that
$$F_{X}(x)=P(X\leq x)=\begin{cases} 0, &x<-1 \\ 1/2, &x\in[-1,1) \\ 1, &x\geq 1\end{cases}$$ and since X only takes values 1 and -1 then X_n = (-1)^{n+X}+\frac1n=(-1)^{n+1}+\frac1n and so $$F_{X_n}(x)=P(X_n\leq x)=\begin{cases} 0, &x<(-1)^{n+1}+\frac{1}{n} \\ 1, &x\geq (-1)^{n+1}+\frac{1}{n}\end{cases}$$ I can't understand how the limits to this have been achieved in the solution. Why does F_{X_n}(x)\rightarrow 1/2 for t\in(-1,1), say?
 
Last edited:
Physics news on Phys.org
I agree with your analysis. It looks like the problem has been incorrectly stated. The ##X_n## are not even random, since ##X_n=(-1)^{n+1}## for all integer ##n##.

The ##X_n## do not converge in distribution to ##X## because ##F_X## is continuous at 0 and equal to ##1/2##, but ##F_{X_n}(0)## is alternately ##0## and ##1## as ##n## increments, hence ##F_n(0)## does not converge to ##1/2##.

The specific error in the text's attempted proof is the statement that 'for large enough ##n##, ##F_{X_n}(t)=1/2##' (for ##t\in(-1,1)##) .
 
  • Like
Likes AlexF
andrewkirk said:
I agree with your analysis. It looks like the problem has been incorrectly stated. The ##X_n## are not even random, since ##X_n=(-1)^{n+1}## for all integer ##n##.

The ##X_n## do not converge in distribution to ##X## because ##F_X## is continuous at 0 and equal to ##1/2##, but ##F_{X_n}(0)## is alternately ##0## and ##1## as ##n## increments, hence ##F_n(0)## does not converge to ##1/2##.

The specific error in the text's attempted proof is the statement that 'for large enough ##n##, ##F_{X_n}(t)=1/2##' (for ##t\in(-1,1)##) .
That makes sense, thanks a lot! I thought I was going crazy xD
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top