Covariant derivatives commutator - field strength tensor

caimzzz
Messages
3
Reaction score
0

Homework Statement


So I've been trying to derive field strength tensor. What to do with the last 2 parts ? They obviously don't cancel (or do they?)

Homework Equations

The Attempt at a Solution


[D_{\mu},D_{\nu}] = (\partial_{\mu} + A_{\mu})(\partial_{\nu} + A_{\nu}) - (\mu <-> \nu) = [\partial_{\mu},\partial_{\nu}] + [\partial_{\mu},A_{\nu}]+[A_{\mu},\partial_{\nu}] +[A_{\mu}, A_{\nu}] =
\partial_{\mu}A_{\nu} - \partial_{\nu} A_{\mu} + [A_{\mu},A_{\nu}] -A_{\nu} \partial_{\mu} + A_{\mu} \partial_{\nu}
 
Physics news on Phys.org
They are canceled by the first two terms when the derivative acts on whatever function the entire operator is acting on. What remains is just the derivative acting on the A fields.
 
Thank you
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top