Electric field inside a uniformly polarized cylinder

AI Thread Summary
The discussion focuses on calculating the electric field inside a uniformly polarized cylinder using Gauss' law. The derived electric field is expressed as E = P/(2ε₀), where P is the polarization. A key point of contention arises regarding the direction of the dipole vector d, with confusion about whether it should be defined from the negative to the positive charge or vice versa. Clarifications indicate that the vectors s₊ and s₋ represent distances from different origins to a common point r, emphasizing the importance of correctly identifying these vectors in the context of the problem. The resolution highlights the necessity of accurate vector representation in understanding the electric field distribution.
Potatochip911
Messages
317
Reaction score
3

Homework Statement


This is problem 4.13 from Griffiths. A long cylinder of radius a carries a uniform polarization P perpendicular to its axis. Find the electric field inside the cylinder.

Homework Equations


##\int \vec{E}\cdot dA = q_{encl}/\varepsilon_0##

The Attempt at a Solution


[/B]
We solve the problem by using a positive and negatively polarized cylinder:
Using Gauss' law we find

$$ \vec{E}(2\pi \vec{s} l) = \frac{\rho \pi \vec{s}^2 l}{\varepsilon_0} \\ \Rightarrow \vec{E} = \frac{\rho}{2\varepsilon_0}\vec{s}$$

then
$$\vec{E_+} = \frac{\rho}{2\varepsilon_0}\vec{s_+} \\ \vec{E_-} = -\frac{\rho}{2\varepsilon_0}\vec{s_-}$$

Summing together gives

$$\vec{E} = \frac{\rho}{2\varepsilon_0}\left(\vec{s_+} - \vec{s_-} \right)$$

and since for dipoles we define the vector ##\vec{d}## going from the negative to the positive charge ##\vec{d} = s_+ - s_-##

$$\vec{E} = \frac{\rho \vec{d}}{2\varepsilon_0} = \frac{\vec{P}}{2\varepsilon_0}$$

However, in the solutions manual they claim ##\vec{d}## is going from the negative to the positive axis and that ##\vec{s_+}-\vec{s_-} = -\vec{d}## which I am having a hard time believing as from a simple diagram this seems incorrect.

vector.png
 

Attachments

  • vector.png
    vector.png
    2.6 KB · Views: 1,212
Physics news on Phys.org
I can't draw a diagram, but I think I can describe the picture: Assume the + cylinder is translated to the right by a vector ## \vec{d} ##. (The cross-sectional view involves two circles of radius ## a ## in the x-y plane, with the + circle a distance ## d ## to the right of the - circle). Then, at a given location ## \vec{r} ## where the electric field is being determined, e.g. upward and to the right of the origin, ## \vec{s_-} ## will be the longer vector in reaching the location ## \vec{r} ##. We can write ## \vec{s_-}=\vec{s_+}+\vec{d} ##.
 
  • Like
Likes Potatochip911
Charles Link said:
I can't draw a diagram, but I think I can describe the picture: Assume the + cylinder is translated to the right by a vector ## \vec{d} ##. (The cross-sectional view involves two circles of radius ## a ## in the x-y plane, with the + circle a distance ## d ## to the right of the - circle). Then, at a given location ## \vec{r} ## where the electric field is being determined, e.g. upward and to the right of the origin, ## \vec{s_-} ## will be the longer vector in reaching the location ## \vec{r} ##. We can write ## \vec{s_-}=\vec{s_+}+\vec{d} ##.

Am I drawing it incorrectly? I still don't find the same result as you.
vecto2.png
 

Attachments

  • vecto2.png
    vecto2.png
    3 KB · Views: 1,303
Potatochip911 said:
Am I drawing it incorrectly? I still don't find the same result as you.
View attachment 221841
Your drawing is incorrect. ## d ## is a shift of the origins of two circles, each of radius ## a ##, along the x-axis. A point ## \vec{r} ## is common to both of them. ## \vec{s}_+ ## is a vector from the rightmost origin to ## \vec{r} ##, and ##\vec{s}_- ## is a vector from the leftmost origin to ## \vec{r} ##.
 
  • Like
Likes Potatochip911
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top