- #36
- 50
- 0
i do but i dont, i have the initial currents for all three. i don't have the end current for the +3, and theyre all over the place anyway. What do you think of my graph, and the gradient analysis?
(snip) there would be a linear fit/trend. It wouldn't be prefect but my results arnt completely precise. This would also make the trend directly proportional, this is what i would have expected, but i can't explain why.(snip)
"n:" decreased through each run as material is plated on the cathode; changed from Ag to Cu to Fe as number of anions increased
Are you saying my analysis of n A and v are wrong? or are you adding to them?
Isnt this charge, not number, as i am changing ion charge?
Yes, by comparing my results from 1-3 on Gold and Copper, i see the mass changes decrease slightly over the 3 runs. Wouldnt the "growths" and "fill ins" roughly equal up? or do they have tendencies to do just one?
Velocity, didnt i control these well, both through temperature and input voltage?
Finally, I = k x e - what is k?
Ive heard k is "so many times" something? e.g k X 9 would be the 9 times table?
Thanks
"n" is the concentration of ions per unit volume; "e" is the charge of a particular ion. 0.1m AgNO3 ionizes when dissolved in water to give you 0.1m NO3-1 and 0.1m Ag+1 which is not the same value of "n" for 0.1m FeCl3, 0.1m Fe+3 and 0.3m Cl-1. The current carrying product of n and e for the two salts is different, 0.2 for Ag and 0.6 for Fe.
This is what is termed "throw," and is different for every metal and for every plating solution/recipe. Some metals cover the cathode more uniformly than others. You can get smooth plating films, rough blobs and gobs, metals that grow staghorns and trees. It's part of the "art" that is necessary to make a living running a plating shop.
Was what i said about crumple zones right, id feel terrible if i was giving someone false information.
Okay, i think that's fine now :) My intention was to control n A and v and just change e. That would have given me a linear trend. Due to errors and things i couldn't control precisely (temperature), i only controlled ...
wait, i havnt controlled/kept constant anything?
n - didnt 100% understand what you said about ion concentration per unit volume, but i understand that by using 100ml at each at 0.1mol, that was not enough to control ion concentration, and i did not control this well.
A - The surface area varied with each run
v - Volts - Kept constant
-- Temperature - Did vary day by day, not much, but there was a change
This is not a total diaster ... as far as schoolwork goes, because.
I have a trend that supports my prediction and hypothesis
I have a lot of errors i can talk about, and most importantly, describe how to minimise/eradicate in future experiments. e.g, do all tests at a controlled temperature.
er, I am not sure. I don't think i expect iron+3 to have three times more moles deposited than silver +1. I do expect a proportional relationship though. I expect more moles deposited on the cathode after using the iron electrolyte than the silver electrolyte. This is because iron ions have a higher charge.
Am i right in thinking, because silver has almost double the atomic mass of iron, that 10 iron ions would need to be plated to equal 5 silver ions?
If this is the case, because iron deposited a higher mass change than silver, many many more ions were deposited on the cathode than the amount of silver ions deposited.
Going on holiday wednesday morning, so won't be able to reply after that until the 1st sept.
Adam
there is something in "I=nAve" that is still leading you off into the weeds.