Electrostatics - Conducting torus and a point charge

thepero
Messages
2
Reaction score
0

Homework Statement


We have a metal conducting torus and a point charge that is located on the torus' axis (location on the axis is arbitrary). Calculate the (influenced) charge distribution on the torus and the electrostatic force on the point charge.


Homework Equations


Equation for electrostatic potential (volume integral over charge distribution etc.)


The Attempt at a Solution


OK, so the problem is pretty straightforward. I'm trying to solve this problem with method of images where I substituted the torus with a charged loop. There are lots of variables, so I'm not going to write everything. The problem simplifies to an electrostatic potential of a charged loop and this is where it gets complicated (for me :)). At first, I tried spherical coordinates, but I got an elliptical integral at the end. So, I tried toroidal coordinates, which seemed a bit complicated. I got stuck at getting the charge distribution of a charged loop in toroidal coordinates. I'm used to write it with delta functions and don't know how to do that in toroidal coordinates. I'm using (u,v,phi) for notation and the values for coordinates on the loop are u=0 rad, v=inf, phi=[o,2pi]. I don't know if this is right, but the problem is the infinite value of v.
So, I have two questions: Am I even on the right track with the toroidal coordinates and how would one write a charge distribution?

Regards!
 
Physics news on Phys.org
Is the torus grounded?
 
Sorry for that. Yes, the torus is grounded.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top