Expression of Electric Field with known charges

AI Thread Summary
The discussion revolves around calculating the charge Q2 and the electric field at its location due to charge Q1. Q2 is determined to be 13.3 µC using Coulomb's Law and the given force between the charges. For the electric field at Q2, it is clarified that only the contribution from Q1 should be considered, as Q2 does not influence its own electric field. The correct approach involves using the formula for the electric field as a vector, incorporating both magnitude and direction. The participants emphasize the importance of understanding whether to include contributions from both charges or just Q1 in the calculations.
Alexstre
Messages
17
Reaction score
0

Homework Statement



I have 2 charges:
Q1 = 300 uC located at (1, -1, -3) m
Q2 = ?? uC located at (3, -3, -2) m

Q1 feels a force from Q2 of F1=(8i - 8j + 4k) N

1. Find Q2
2. Find the expression of the E-Field at (3, -3, -2) m (at Q2)

Homework Equations


F=(k|Q1*Q2|) / r^2
E=(k|q|) / r^2

The Attempt at a Solution


For the first part I've used the magnitudes:
Q1 = (1, -1, -3) m = \sqrt{1^2 + -1^2 + -3^2}
F1 = (8i - 8j + 4k = 4 N

I found the distance between Q1 and Q2 using pythagorean formula: 3 meters.
Then I solved for Q2 using Coulomb's Law:
Q2 = 13.3 uC

For the second part, I know that since they ask for the expression of the electric field at the location of Q2, Q2 will not contribute to the value. Beside that, I'm a bit lost.

Do I need to use the distance between Q1 and Q2, then solve for E=k|q| / r^2? What's |q| in this case?

Thanks!
 
Physics news on Phys.org
The E-field by both charges is not definite at the positions of the charges. I think if the question is given by your teacher, you should seek clarification from him whether he asks for the E-field by both or the E-field contributed by only Q1 (if the latter, ignore Q2 as you only count Q1 in the E-field by Q1). Otherwise, you should ignore the question, as it doesn't have an appropriate answer.
 
hikaru1221 said:
The E-field by both charges is not definite at the positions of the charges. I think if the question is given by your teacher, you should seek clarification from him whether he asks for the E-field by both or the E-field contributed by only Q1 (if the latter, ignore Q2 as you only count Q1 in the E-field by Q1). Otherwise, you should ignore the question, as it doesn't have an appropriate answer.

I'm assuming it's the latter; that I can ignore Q2 and only count Q1. I'm still not sure how to do it though. Is |q| in E=k|q| / r^2 simply the value of Q1?

Thanks!
 
Do you have to count something else besides Q1 when calculating something created by only Q1? :wink:

EDIT: By the way, the question asks for the E-field which is a vector, not just its magnitude. You may find this formula helpful \vec{E}=k\frac{q}{r^3}\vec{r}
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top