Finding electric potential given a cylindrical configuration

AI Thread Summary
To find the electric potential between two concentric cylinders, start by applying Gauss's Law to determine the electric field E in the region between the cylinders. The relationship between electric field and potential is crucial, as E can be expressed in terms of charge and area. The electric field can be derived as E = λ/(2πεr) for a cylindrical configuration, where λ is the linear charge density. The potential difference can then be calculated using the integral of E, leading to the form V(r) = constant1 - constant2 ln(r). Understanding the Gaussian surface and charge enclosed is essential for accurate calculations.
carloz
Messages
4
Reaction score
0

Homework Statement



You have two concentric cylinders. The inner cylinder has radius a and the external cylinder has radius b. Find the electric potential in the region between the cylinders.

[Hint: The final equation takes the form V(r) = constant1 - constant2 ln(something) ]


Homework Equations



I think:
Gauss's law: \Phi=EA=q/ε
Coulomb's law: E=q/(4πεr^2)

The Attempt at a Solution



I really don't know.
 
Physics news on Phys.org
Start by finding the electric field E between the two cylinders using Gauss's Law.

How is E related to the potential?
 
Okay

So

EA=q/ε

E=q/(εA)

A=2πrL

dA=2πLdr

dE=q/(ε2πLdr)

E = ∫(limits a and b) q/(ε2πLdr) = q/(ε2πL) ∫(limits a and b) 1/dr

Am I on the right track? If so, how to evaluate ∫(1/dr) ?

Thank you.
 
Do you know the answer to this? I am just learning this material also, so I don't know if I am thinking through it correctly. But the outer shell should be irrelevant as the electric field is going to be zero for any point inside it assuming it is infinitely long, correct? For the electric field at r distance from the center of cylinder with radius a, would its magnitude be λ/(2πεr) (derived with Gauss's law)? If so, you would end up with Δv(r) = v(r) (taking v_i = 0) = λln(a)/(2πε) - λln(r)/(2πε) where a <= r <= b, λ = q/l. But I have no idea if that is correct.
 
carloz said:
Okay

So

EA=q/ε

E=q/(εA)

A=2πrL

dA=2πLdr

dE=q/(ε2πLdr)

E = ∫(limits a and b) q/(ε2πLdr) = q/(ε2πL) ∫(limits a and b) 1/dr

Am I on the right track? If so, how to evaluate ∫(1/dr) ?

Thank you.
No. First off, what's your Gaussian surface and what expression is equal to the amount of charge enclosed in it?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top