VinnyCee
- 486
- 0
Homework Statement
For the periodic signal
x(t)\,=\,2\,+\,\frac{1}{2}\,cos\left(t\,+\,45^{\circ}\right)\,+\,2\,cos\left(3\,t\right)\,-\,2\,sin\left(4\,t\,+\,30^{\circ}\right)
Find the exponential Fourier series.
Homework Equations
Euler’s Formula
x(t)\,=\,A\,cos\left(\omega_0\,t\,+\,\phi\right)\,=\,A\,\left[e^{j\,\left(\omega_0\,t\,+\,\phi\right)}\,+\, e^{-j\,\left(\omega_0\,t\,+\,\phi\right)}\right]
The Attempt at a Solution
To get \omega_0, we need to find the least common denominator between the following periods…
\frac{2\,\pi}{3},\,2\,\pi,\,\frac{\pi}{2}
Which is 2\,\pi.So, now I use the formula \omega_0\,=\,\frac{2\,\pi}{T}…
\omega_0\,=\,\frac{2\,\pi}{2\,\pi}\,=\,1Now, I use Euler’s formula to convert the cos and sin to exponentials…
x(t)\,=\,2\,+\,\frac{1}{2}\,\left[e^{j\left(t\,+\,45^{\circ}\right)}\,+\,e^{-j\left(t\,+\,45^{\circ}\right)\right]\,+\,2\,\left[e^{j\left(3\,t\right)}\,+\,e^{-j\left(3\,t\right)}\right]\,-\,2\left[e^{j\left(4\,t\,-\,60^{\circ}\right)}\,+\,e^{-j\left(4\,t\,-\,60^{\circ}\right)}\right]
I don’t know if the last term (sin) is supposed to be kept as 4\,t\,+\,30^{\circ}
OR changed to a cosine to fit Euler’s formula by subtracting ninety degrees: 4\,t\,-\,60^{\circ}I assumed the latter, is that correct?