Finding local min, max, and saddle points in multivariable calculus

woodenbox
Messages
6
Reaction score
0

Homework Statement



Find the local maximum and minimum values and saddle point(s) of the function.

f(x,y) = 1 + 2xy - x^2 - y^2

Homework Equations



The Second Derivative Test: let D = D(a,b) = fxx(a,b)*fyy(a,b) - [fxy(a,b)]^2
if D > 0 and fxx(a,b) > 0, then f(a,b) is a local minimum
if D > 0 and fxx(a,b) < 0, then f(a,b) is a local maximum
if D < 0 then f(a,b) is a saddle point
if D = 0 then the test is inconclusive

The Attempt at a Solution



I tried to use the Second Derivative Test to find the local mins, maxes, and saddle points but it's inconclusive, and I don't know how else to find them. My textbook says the answer is "f has a local maximum value of 1 at all points of the form (x, x)"

This is my work for the Second Derivative Test:

fx = 2y - 2x = 0 --> 2y = 2x --> y = x

fy = 2x - 2y = 0 --> 2x - 2(x) = 0 --> 0 = 0

so i guess there are critical points at every value where y = x... which matches the textbook's answer.
and then:

fxx = -2

fyy = -2

fxy = 2

so D = fxx * fyy - (fxy)^2 = (-2)*(-2) - 2^2 = 4 - 4 = 0 so the test is inconclusive

Is there a different way to find the local mins, maxes, and saddle points?
 
Physics news on Phys.org
got the answer, for anyone else who looks this up.

Rewriting the function as f(x, y) = (x - y)^2 + 1,
we see that the minimum value must be 1 (since 0 is the smallest value of a square),
and this is attained whenever y = x (i.e., points of the form (x, x)).
 
woodenbox said:

Homework Statement



Find the local maximum and minimum values and saddle point(s) of the function.

f(x,y) = 1 + 2xy - x^2 - y^2

Homework Equations



The Second Derivative Test: let D = D(a,b) = fxx(a,b)*fyy(a,b) - [fxy(a,b)]^2
if D > 0 and fxx(a,b) > 0, then f(a,b) is a local minimum
if D > 0 and fxx(a,b) < 0, then f(a,b) is a local maximum
if D < 0 then f(a,b) is a saddle point
if D = 0 then the test is inconclusive

The Attempt at a Solution



I tried to use the Second Derivative Test to find the local mins, maxes, and saddle points but it's inconclusive, and I don't know how else to find them. My textbook says the answer is "f has a local maximum value of 1 at all points of the form (x, x)"

This is my work for the Second Derivative Test:

fx = 2y - 2x = 0 --> 2y = 2x --> y = x

fy = 2x - 2y = 0 --> 2x - 2(x) = 0 --> 0 = 0
fx = 2y - 2x
fx = 0 ==> y = x

fy = 2x - 2y
fy = 0 ==> x = y

fx and fy are both zero along the line y = x.
woodenbox said:
so i guess there are critical points at every value where y = x... which matches the textbook's answer.
and then:

fxx = -2

fyy = -2

fxy = 2

so D = fxx * fyy - (fxy)^2 = (-2)*(-2) - 2^2 = 4 - 4 = 0 so the test is inconclusive

Is there a different way to find the local mins, maxes, and saddle points?

The function can be written as f(x, y) = 1 - (x2 - 2xy + y2), and the right side can be written in factored form, which should give you some ideas for finding the global maxima and minima.
 
that does make a lot of sense... i never thought to take a more direct approach. thank you for your help!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top