Finding missing components given speed and direction.

AI Thread Summary
The discussion revolves around calculating the velocity components of an ostrich running at 17.0 m/s at an angle of 68 degrees NW. Participants emphasize the use of right triangle trigonometry to determine the northward and westward components of the velocity. The hypotenuse represents the total velocity, while the x- and y-components can be found using cosine and sine functions, respectively. There is some confusion regarding rounding the final answers and the appropriate units for the magnitude. The conversation highlights the importance of understanding vector components in physics problems.
bling-bling
Messages
19
Reaction score
0

Homework Statement


#26 (on attachment). The speed of an object and the direction in which it moves constitute a vector quantity known as the velocity. An ostrich is running at a speed of 17.0 m/s in a direction of 68 degrees NW. What is the magnitude of the ostrich's velocity component that is directed (a) due north and (b) due west?

Homework Equations


R2 = A2 + B2 – 2ABcosθ
x: (hyp)(cosθ)
y: (hyp)(sinθ)

The Attempt at a Solution


I have no idea what do to. This is my summer assignment for ap physics and I've not taken pre-cal or cal or physics before so I am confused. i have a couple more problems like this that I am confused in, but that's a different thread..
 

Attachments

Physics news on Phys.org
This uses right triangle trig. If you plot the velocity vector of the ostrich on a graph, starting at the origin, can you figure out where it will end? You know the hypotenuse and you're looking for the x- and y-components.
 
ohh. now i feel stupid that i didn't think of that before.
 
should i round to nearest tenth or hundredth?
 
bling-bling said:
should i round to nearest tenth or hundredth?

tenth will be ok
 
so would the units be m/s or not since it asks for magnitude??
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top