How Do You Calculate the Initial Velocity of a Car Skidding Up an Incline?

AI Thread Summary
To calculate the initial velocity of a car skidding up a 20-degree incline, the force of friction must be determined using the coefficient of kinetic friction and the normal force, which is influenced by the incline. The correct normal force is calculated as mg*cos(20), leading to a frictional force of 9010 N. The weight of the car acting down the incline is also considered, calculated as mg*sin(20), which adds to the forces opposing the car's motion. The net force is then used to find the acceleration, which is 8.86 m/s², and applying kinematic equations yields an initial velocity of 16.4 m/s. This approach correctly incorporates both kinetic friction and the weight component along the incline.
PascalPanther
Messages
23
Reaction score
0
I am suppose to find the initial velocity of a car before it skids to a stop.
The car begins it's stop right as it is going up a road that is 20 degrees above the horizontal. The car makes a 15.2 m skid mark before it stops. The coefficient of kinetic friction is 0.60, and static friction is 0.80. The mass of the car and its driver is 1630kg.
Now this is my assumption, that since the car left a skid mark, that would mean the wheels aren't turning. Which I don't think matters, since it would still be kinetic even if the wheels were turning (?) Since I am stopping, there is no other positive force working against the force of friction. My final velocity is 0 since I stop.

First thing I should do is find the force of friction.
Force of friction = (coef) (normal force)
The normal force is the force parallel to the plane, so it is m*g*cos20
F(k) = (0.60) (1630kg*9.8m/s^2) = 9010 N

Next:
F = ma; 9010N = 1630kg(a) = 5.53 m/s^2
I think I can use kinematics now, and:
vf^2 - vi^2 = 2a(x)
vi^2 = 2(5.53 m/s^2)(15.2m)
vi = 13.0 m/s

Does that seem about right? Or am I suppose to use the static friction in there somehow?
 
Physics news on Phys.org
PascalPanther said:
I am suppose to find the initial velocity of a car before it skids to a stop.
The car begins it's stop right as it is going up a road that is 20 degrees above the horizontal. The car makes a 15.2 m skid mark before it stops. The coefficient of kinetic friction is 0.60, and static friction is 0.80. The mass of the car and its driver is 1630kg.
Now this is my assumption, that since the car left a skid mark, that would mean the wheels aren't turning. Which I don't think matters, since it would still be kinetic even if the wheels were turning (?)
No, if the weels were turning you should use static friction. A weel turns because at each instant one of it´s points is static relative to the ground.
This is why you break more fast if you don´t block your weels, since static friction is greater than the kinectic.
Since I am stopping, there is no other positive force working against the force of friction. My final velocity is 0 since I stop.

First thing I should do is find the force of friction.
Force of friction = (coef) (normal force)
The normal force is the force parallel to the plane, so it is m*g*cos20
No, normal is a synonim to perpendicular. The normal force is orthogonal to the plane. It is mg sin(20).
F(k) = (0.60) (1630kg*9.8m/s^2) = 9010 N

Next:
F = ma; 9010N = 1630kg(a) = 5.53 m/s^2
I think I can use kinematics now, and:
vf^2 - vi^2 = 2a(x)
vi^2 = 2(5.53 m/s^2)(15.2m)
vi = 13.0 m/s

Does that seem about right? Or am I suppose to use the static friction in there somehow?
Redo your calculations with the correct normal force.
 
SGT said:
It is mg sin(20).
No, it's not (at least not when the x-axis is oriented parrallel to the incline :smile: ).
 
Last edited:
PascalPanther said:
First thing I should do is find the force of friction.
Force of friction = (coef) (normal force)
The normal force is the force parallel to the plane, so it is m*g*cos20
F(k) = (0.60) (1630kg*9.8m/s^2) = 9010 N
The normal force is perpendicular to the plane, but m*g*cos20 is correct. What happened to the cos20?

Next:
F = ma; 9010N = 1630kg(a) = 5.53 m/s^2
Friction is not the only force acting on the car.

Or am I suppose to use the static friction in there somehow?
Kinetic friction applies here. See my comments: https://www.physicsforums.com/showpost.php?p=1093726&postcount=6
 
Doc Al said:
The normal force is perpendicular to the plane, but m*g*cos20 is correct. What happened to the cos20?


Friction is not the only force acting on the car.


Kinetic friction applies here. See my comments: https://www.physicsforums.com/showpost.php?p=1093726&postcount=6
oops, forgot to put it in the equation. But I did solve with it.
F(k) = (0.60) (1630kg*9.8m/s^2)*cos20 = 9010 N

Okay, I think I understand why it is kinetic friction for locked wheels now, and static for unlocked. Seemed odd at first, but it makes sense now.

I believe I am missing the weight of the car on the incline? Now this force should be parallel, not the other, and is F= m*g*sin20.
F(w) = (1620kg * 9.8m/s^2 * sin20)= 5430N.

Both forces are against the car, so 5430N + 9010N = 14440N
F=ma
14440N = 1630kg * (a)
a= 8.86 m/s^2
vf^2 - vi^2 = 2a(x)
vi^2 = 2(8.86 m/s^2)(15.2m)
vi = 16.4 m/s

Does that look better?
 
PascalPanther said:
I believe I am missing the weight of the car on the incline? Now this force should be parallel, not the other, and is F= m*g*sin20.
Exactly.
F(w) = (1620kg * 9.8m/s^2 * sin20)= 5430N.
Isn't the mass 1630 kg?

Both forces are against the car, so 5430N + 9010N = 14440N
F=ma
14440N = 1630kg * (a)
a= 8.86 m/s^2
vf^2 - vi^2 = 2a(x)
vi^2 = 2(8.86 m/s^2)(15.2m)
vi = 16.4 m/s
Much better. (Just check your calculations for errors. Don't round off until the last step.)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top