GRADE 12: Energy, Springs and maybe momentum/collisions?

AI Thread Summary
The discussion focuses on deriving equations to calculate the distance a spring should be pulled back in a projectile motion scenario involving energy conservation. Key concepts include the use of kinetic energy, potential energy, and spring energy equations, along with the need for 2D trajectory equations due to the initial and final heights being different. Participants emphasize the importance of incorporating both energy conservation and trajectory analysis in the calculations. There is a mention of the SUVAT equations for constant acceleration as a potential resource for solving the problem. The conversation highlights the challenge of solving the problem without a provided velocity.
michael simone
Messages
3
Reaction score
0

Homework Statement


A spring of mass “m” is put on a launcher elevated at “θ” degrees above the horizontal. It is pull back a distance “x” and launched at a target that must travel vertically “dy“ and a horizontal distance of “dx”. The spring has a constant of “k”.Derive an equation (or series of equations) given m, θ, dy ,dx, k so you can calculate a value of x.Example The target is 3.5 m away and the launder is elevated at 30o and it is 1.2 m high, the mass of the spring is 4.5 g, what distance should the spring be pulled back to land in a target that is 0.40 m tall if k = 18 N/m?

Homework Equations


PTi= PTf
Ei=Ef
ENERGY
KINETIC (Ek)
Ek=1/2 MV^2
SPRINGS(elastic Ee)
Ee=1/2 KX^2
E1=E2 IE
Potential (Eg)
Eg= mgh or mg(delta y)
vx= vicos (theta)
Projectile motion and Energy[/B]

The Attempt at a Solution

 
Last edited:
Physics news on Phys.org
Check your textbook for 1) 2D trajectory equations and 2) the conservation of mechanical energy. You will need both.
 
Dr Dr news said:
Check your textbook for 1) 2D trajectory equations and 2) the conservation of mechanical energy. You will need both.
ENERGY
KINETIC (Ek)
1/2 MV^2
SPRINGS(elastic Ee)
1/2 KX^2
E1=E2 IE
Potential (Eg)
mgh or mg(delta y)
vx= vicos (theta)
 
The classical range equation is based on the initial elevation and the final elevation both being on the ground. In your problem you have an initial height as well as a final height which means you need to carry them along in your trajectory analysis.
 
  • Like
Likes michael simone
thanks for that tip, but how do i slove this when v is not provided.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top