HARD Mathematic examination question

  • Thread starter Thread starter Danico
  • Start date Start date
  • Tags Tags
    Hard Mathematic
Danico
Messages
2
Reaction score
0
HARD! Mathematic examination question

Homework Statement



$$\int_0^2\int_π/3^π (x^2*\sec^3 x^3 -12\ /\sqrt{e^π+x^2 +2x})\,dx\,d(theta)$$ :cool:

Homework Equations



I could not find any relevant questions on the web, however this is simply a question from an exam written the 14th of October 2013 regarding multiple integrals

The Attempt at a Solution



I attempted to use trig substitution, substituting x=tan(theta), dx=sec^2(theta) d(theta)
to no progress I gave up :cry: ... then I wondered whether i should have subsituted u=π-x ∴ x=π-u
but this led to bigger problems... I have sincerely attempted to solve this problem for a day now, please help, I would trully appreciate it...
 
Last edited by a moderator:
Physics news on Phys.org
So it's ##\displaystyle\int_0^2\left(\int_{\frac\pi3}^\pi\left(x^2\cdot\sec^3 \left(x^3\right)-\dfrac{12}{\sqrt{e^\pi+x^2+2\cdot x}}\right)\cdot\mathrm{d}x\right)\cdot\mathrm{d}\theta##? That ... sounds like a strange integral, especially considering the lack of any ##\theta## in the integrand. Try using the fact that ##\displaystyle\int\left(f+g\right)=\int f+\int g##, then use a couple substitutions. You might have to complete the square in the square root.
 
'm terribly sorry, its my first time so I made a slight mistake in the equation... Its supposed to be a double integral, not separated by brackets. Also it should read after the second integral [x^2.Sec^3(x^3 -12)/√e^π+x^2 -2x] and finally dx.d(theta)
 
Danico said:
'm terribly sorry, its my first time so I made a slight mistake in the equation... Its supposed to be a double integral, not separated by brackets. Also it should read after the second integral [x^2.Sec^3(x^3 -12)/√e^π+x^2 -2x] and finally dx.d(theta)
It still doesn't make any sense. Surely there should be a theta somewhere other than in the dθ.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top