capandbells
- 95
- 0
This isn't a homework problem, but I'm having trouble understanding the following equality in a paper I'm reading
<br /> \left<\mathbf{j}(\mathbf{r},t)\cdot\mathbf{E}(\mathbf{r},t)\right>_t = - \frac{1}{2}\mathrm{Re}\left[i\omega\frac{\epsilon(\mathbf{r}) - 1}{4\pi}\mathbf{E_0}(\mathbf{r})\mathbf{E_0^*}(\mathbf{r}) \right]<br />
where
<br /> \mathbf{E}(\mathbf{r},t) = \mathrm{Re}\left[\mathbf{E_0}(\mathbf{r})e^{-i\omega t}\right]<br />
I understand that
<br /> \mathbf{j}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t) = i\omega\frac{\epsilon(\mathbf{r}) - 1}{4\pi}\mathbf{E}(\mathbf{r},t)<br />
but I'm 100% sure how to get from there to the other expression. Mostly I'm confused about how the conductivity gets inside the Re operator. I'm pretty confused in general about how to take the dot product of such a complicated vector expression.
Homework Statement
Homework Equations
<br /> \left<\mathbf{j}(\mathbf{r},t)\cdot\mathbf{E}(\mathbf{r},t)\right>_t = - \frac{1}{2}\mathrm{Re}\left[i\omega\frac{\epsilon(\mathbf{r}) - 1}{4\pi}\mathbf{E_0}(\mathbf{r})\mathbf{E_0^*}(\mathbf{r}) \right]<br />
where
<br /> \mathbf{E}(\mathbf{r},t) = \mathrm{Re}\left[\mathbf{E_0}(\mathbf{r})e^{-i\omega t}\right]<br />
The Attempt at a Solution
I understand that
<br /> \mathbf{j}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t) = i\omega\frac{\epsilon(\mathbf{r}) - 1}{4\pi}\mathbf{E}(\mathbf{r},t)<br />
but I'm 100% sure how to get from there to the other expression. Mostly I'm confused about how the conductivity gets inside the Re operator. I'm pretty confused in general about how to take the dot product of such a complicated vector expression.