Heat flow problem (copper pipe)

AI Thread Summary
The discussion revolves around calculating heat flow through a copper bar with specified dimensions and temperature difference. The user initially converted the cross-sectional area incorrectly, which impacted the calculations. The correct conversion of 4.40 cm² to m² is crucial for accurate results. The user also attempted to calculate thermal resistance and current but received an incorrect final value. A fellow participant pointed out the area conversion mistake, highlighting its significance in the overall calculation.
BMcC
Messages
32
Reaction score
0

Homework Statement



A copper bar with a cross sectional area of 4.40 cm2 and a length of 0.62 m has one end at 1 °C and the other end at 97 °C. Find the heat flow through the bar if the thermal conductivity of copper is 385 W/(m·K)

Homework Equations



R = (λ*L)/A

I = ΔT / R

k = 1/λ

R = resistance
λ = thermal resistivity
L = length of pipe
A = cross sectional area

I = thermal current
ΔT = change in temperature

k = thermal conductivity

3. My attempt

So first I converted the area 4.40 cm2 into 0.044 m2.

Then I converted the thermal conductivity given in the problem to thermal resistivity

k = 1/λ
λ = 1/k = 1/385 W/(m·K) = 0.00259 mK/W

Using this value, the area, and the length from the problem, I used R = (λ*L)/A

R = (0.00259 mK/W)(0.62 m) / 0.044 m2
R = 0.0366 K/W

Now I plugged this R into the thermal current formula I = ΔT/R, where ΔT = 97 °C - 1 °C = 96 °C

The ΔT is measured in Kelvin, but is still a difference of 96 units.

I = 96K / 0.0366 K/W = 2622.95 W = 2622.95 J/s

This is incorrect apparently. Does anybody know where I might have went wrong?

Thanks!
 
Physics news on Phys.org
Hello, BMcC. I haven't checked all of your numbers, but I did notice that you made a common mistake in converting 4.40 cm2 to m2.
 
  • Like
Likes 1 person
Ah wow how silly of me. That changes everything. Thanks TSny!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top