How do I calculate physics formulas containing derivatives and real numbers?

AI Thread Summary
To calculate impulse when an object is hit by a force, the relationship dP/dt = Fnet can be used, leading to dP = Fnet*dt. However, the concept of a collision lasting zero seconds is flawed, as real collisions take a non-zero amount of time. The derivative of a constant force is zero, complicating calculations when approaching zero time intervals. For accurate results, one can approximate by dividing time into finite intervals and summing the forces over those intervals. Understanding these concepts often requires a solid grasp of calculus, which is essential for dealing with instantaneous changes in physics.
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, I'm trying to calculate my own physics problem but didn't get it something.
When I'm trying to calculate the impulse of the object when it's hit by F=10N force in the smallest possible time, then should I write:
dP/dt = Fnet => dP = Fnet*dt ?

Another question: In general, if I calculate just a net force, we know that the derivative of the constant is zero. Then if dP is 10 N/s and t->0 therefore Fnet = 10/0 ?
What I don't get is how to calculate any physics formula which contains derivatives and real numbers.
 
Physics news on Phys.org
I don’t think any collision actually lasts 0 seconds. A collision that lasts 0 seconds is a collision that doesn’t actually happen.

Also ##dP## would have units of ##N \cdot s## not ##\frac{N}{s}##.
 
  • Like
Likes topsquark, malawi_glenn and NODARman
1664705379921.png

1664705400972.png

These might help

and if ##\dfrac{\mathrm{d}p}{\mathrm{d}t} = F(t)## then ## \displaystyle \Delta p = \int_{t_1}^{t_2}F(t) \mathrm{d}t##
Now one can define the average constant force of impulse as ##<F> = \Delta p / \Delta t = \Delta p / (t_2 - t_1) ##
i.e. ## \displaystyle <F> = \dfrac{1}{t_2 - t_1} \int_{t_1}^{t_2}F(t) \mathrm{d}t## which you might remember from calculus class.
 
Last edited:
  • Like
Likes topsquark, NODARman, PeroK and 1 other person
NODARman said:
What I don't get is how to calculate any physics formula which contains derivatives and real numbers.
You could take a calculus course?
 
  • Like
Likes FactChecker, topsquark and malawi_glenn
NODARman said:
When I'm trying to calculate the impulse of the object when it's hit by F=10N force in the smallest possible time
There's no such thing as the smallest amount of time. Unless you mean zero, in which case no collision occurs. The collision must last for some nonzero amount of time, however small.
 
NODARman said:
Homework Statement:: .
Relevant Equations:: .

What I don't get is how to calculate any physics formula which contains derivatives and real numbers.
You should not feel bad, it took a fellow named Newton to figure out how to deal with instantaneous change.
To any degree of approximation for a well behaved force, slicing time into finite intervals Δt, assuming the force is constant over that interval and summing will get you a numerical result to nearly any level of accuracy required.
But doing the clever stuff like calculating exact orbits for all time requires a leap of intuition. What happens to this rate of change as I slice time into infinitesimal pieces (dt) ?? The answer is called The Calculus and it is a touchstone for human ingenuity. It is not easy.
 
  • Like
Likes NODARman, bob012345 and PhDeezNutz
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Back
Top