How Do You Calculate Electrostatic Force Between Charges?

AI Thread Summary
To calculate the electrostatic force between two positive point charges, the Coulomb's law formula must be applied correctly, considering both magnitude and direction as vector quantities. The charges are positioned at different y-coordinates, and the charge being evaluated is on the x-axis, which affects the distance calculations. The initial attempt to sum forces as scalars was incorrect; the vector nature of forces requires proper vector addition, including consideration of y-components. Additionally, the discussion touches on the nature of electrostatic interactions, questioning the speed of these interactions and the existence of a messenger particle, likely referring to the concept of virtual photons in quantum field theory. Understanding these principles is crucial for accurately determining the resultant force in electrostatic scenarios.
BoldKnight399
Messages
78
Reaction score
0
Two positive point charges, each of which
has a charge of 1.5 × 10−9 C, are located at
y = +0.50 m and y = −0.50 m.
The Coulomb constant is 8.98755 ×
10^9 N · m2/C2.
a) Find the magnitude of the resultant elec-
trical force on a charge of 1.0×10−9 C located
at x = 0.55 m.
Answer in units of N.

So I drew out a force diagram and thought that the equation would be:
Fel=kc(Q1*q/d1^2)+kc(Q2*q/d2^2) where the q is the 1.0e-9C charge.
Fel=(8.98755e9)(1.5e-9*1.0e-9/.0025)+(8.98755e9)(1.5e-9*1.0e-9/1.1025)
so Fel=5.404757e-6

Apparently that was the wrong answer. Does anybody know or want to explain how I should now re-examine the problem?
 
Physics news on Phys.org
The force from each charge is a vector. You have to add them like vectors, not numbers--the direction matters. Hint: What happens to the y-components?

Also: What's the distance between the charges?
 
yeah...I missed the fact that q was on the x axis. makes sense now. Thank you for your help!
 
I have a question about the operation of the electrostatic force. I solved the Maxwell's equations in a pure static electric conditions and the result I got does not look like a wave equation. If that is the case, then what is the speed of electrostatic interaction in free space? And what is the messenger particle?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top