How much uranium-235 does a nuclear power generator consume to generate 1.5 GW?

AI Thread Summary
To generate 1.5 GW of thermal power in a nuclear reactor, approximately 569.4 kg of uranium-235 is required annually, based on energy calculations. The total energy produced in a year is about 4.73 x 10^16 J, with each fission of U-235 releasing around 200-205 MeV. If the 1.5 GW is electrical power, accounting for a typical efficiency of about 33%, the thermal requirement would increase to approximately 4.5 GW, necessitating around 1,707 kg of U-235. The calculations assume that the reactor operates solely on U-235 without considering the buildup of other isotopes. These estimates highlight the significant fuel requirements for sustained nuclear fission reactions.
swilson31
Messages
2
Reaction score
0
SOLVED
thank you for the help

Homework Statement


The total thermal power generated in a nuclear power reactor is 1.5 GW.
How much uranium-235 does it consume in a year?

ANSWER
m(235U)=-----kg

Homework Equations


E=mc2

The Attempt at a Solution


E=mc2
1.5*109J*60sec*60min*24hr*365days=m*(3*108m/s)2

Solving for m leaves me with .53 kg which come up incorrect in Mastering Physics.
 
Last edited:
Physics news on Phys.org
Hi there,

0.53kg is the mass transformed into energy, not the amount of U-235 needed to sustain a 1.5GW nuclear fission reaction.

To find out how much U-235 you need, you must get the total amount of energy (which you seem to have correct in your equation). Then, how energy is liberated in each fission of U-235 atom can help you find out how many reactions are needed to sustain this power output. Having that number, you can evaluate the number of matter (moles) needed, and then the mass of U-235.

This calculation is a bit simplist but it would give a gross estimate of what is going on in a nuclear reactor.

Cheers
 
A fission reaction does not annihilate all the matter, only a small fraction of the mass of the uranium 235 will be converted into energy. You need to know the starting mass and the mass of the products.
 
swilson31 said:

Homework Statement


The total thermal power generated in a nuclear power reactor is 1.5 GW.
How much uranium-235 does it consume in a year?

ANSWER
m(235U)=-----kg

Homework Equations


E=mc2


The Attempt at a Solution


E=mc2
1.5*109J*60sec*60min*24hr*365days=m*(3*108m/s)2

Solving for m leaves me with .53 kg which come up incorrect in Mastering Physics.
The approach is correct, but some steps are missing.

One must determine the energy E used in a year. E = Power (average) * time, so J = W * s.

Then one must realize the energy per fission, fission consumes 1 atom and the mass of 1 atom. Fission of U-235 produces ~200-205 MeV/fission. (This is fine if one does not consider the contribution of Pu-239/Pu-240/Pu-241 which builds up slowly during operation in commercial reactor.)
 
So total energy=1.5e9*60*60*24*365=4.73e16 J
Fission of one atom of u-235=3.244e-11 J
Fissions needed: total energy/fission of one atom=1.46e27
weight of one u-235 atom:3.9e-25 kg
weight of u-235 used: 1.46e27*3.9e-25 kg= 569.4 kg

is this correct?
 
Method is correct, and result seems to be correct.

This of course assumes that the 1.5 GW is thermal energy, which would be a small reactor.

If 1.5 GW is electrical energy, and the process is about 33% efficient, then the thermal energy would be about 4.5 GW, and the amount of U-235 would be 3 * 569 kg.

A large 3.5 GWt reactor has a core size of about 100 MT or 100,000 kg of fuel.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Back
Top