How to prove Fardays' law of electromagnetic induction

AI Thread Summary
To prove that Faraday's law of electromagnetic induction is consistent with the principle of conservation of energy, one must demonstrate how induced electromotive force (EMF) arises from changing magnetic fields. The key is to show that the work done to move a conductor through a magnetic field or to change the magnetic field around a conductor results in energy being converted into electrical energy. This aligns with the conservation of energy, as the energy input equals the energy output in the form of induced current. Additionally, the relationship between the induced EMF and the rate of change of magnetic flux is crucial in this proof. Understanding these principles solidifies the connection between Faraday's law and energy conservation.
Dranzer
Messages
10
Reaction score
0

Homework Statement


Here is a question which frequently occurs on on our school test:
"Prove Faraday's law of electromagnetic induction on the basis of principle of conservation of energy"

I do not really know how to begin.Thanks!
 
Physics news on Phys.org
Can anyone please tell me how to go about it?
 
Dranzer said:

Homework Statement


Here is a question which frequently occurs on on our school test:
"Prove Faraday's law of electromagnetic induction on the basis of principle of conservation of energy"

I do not really know how to begin.Thanks!

I apologize for not being clear enough.The question should instead read as:

"Prove that Faraday's law of electromagnetic induction is consistent with the principle of conservation of energy".
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top