How to Use Newton's Laws to Solve a Sliding Ramp Problem

Click For Summary
SUMMARY

The discussion focuses on solving a physics problem involving two packages sliding down a 20-degree ramp, utilizing Newton's Laws. Package A, with a mass of 5.0 kg and a coefficient of friction of 0.20, and Package B, with a mass of 10 kg and a coefficient of friction of 0.15, are analyzed to determine the time it takes for Package A to reach the bottom of a 2.0 m ramp. The solution requires calculating the net forces acting on Package A, including gravitational force, friction, and the contact force from Package B, followed by determining the acceleration and applying kinematic equations to find the time.

PREREQUISITES
  • Understanding of Newton's Second Law of Motion
  • Familiarity with free-body diagrams
  • Knowledge of kinematic equations for uniformly accelerated motion
  • Concept of friction and its coefficients
NEXT STEPS
  • Study the application of Newton's Laws in multi-body systems
  • Learn to create and interpret free-body diagrams for complex scenarios
  • Review kinematic equations and their derivations for motion under constant acceleration
  • Explore the principles of friction and its impact on motion in inclined planes
USEFUL FOR

Students studying physics, particularly those tackling problems involving dynamics and motion on inclined planes, as well as educators seeking to enhance their teaching methods in mechanics.

ningaman129
Messages
3
Reaction score
0

Homework Statement


Two packages at UPS start sliding down a 20 degree ramp. Package A has a mass of 5.0kg and a coefficient of friction of .20. Package B has a mass of 10kg and a coefficient of friction of .15. How long does it take package A to reach the bottom? The package are positioned next to each other on the ramp, and the distance from package A to the bottom is 2.0m.


Homework Equations


Newton's Second Law equations.
\sum (FnetA)x=mAaX

\sum (FnetA)y=mAaY

\sum (FnetB)x=mBaX

\sum (FnetB)y=mBaY


The Attempt at a Solution


I tried solving this by putting the horizontal and vertical components in their respective places, but that didn't get me that far, or at least I don't think so. For both y-components of the net force n=mAgcos(20) and n=mBgsin(20), well at least I think so. really I'm not quite sure if I am going in the right direction because I don't know how I am going to solve for time.
 
Physics news on Phys.org
Have you guys done the conservation of energy theorem yet in class?

If so, you can find this by realizing that U1 + K1 + W = U2 + K2
 
no I don't think we covered that yet.
 
Solving for time is no problem because you know that package A was moving under uniform acceleration, and you know what distance it travelled. There is a simple kinematics formula that applies to motion under constant acceleration.

Of course, you need to calculate what that acceleration *is*. I think that the slightly tricky part of this problem is (if I am interpreting the problem correctly) the fact that the two packages are in contact, meaning that the net force on package A in the "down the ramp" direction depends on three things: its weight, friciton, and the contact force from package B pushing on it.
 
The problem says that the packages are "next to each other", but seems to left implicit that they are in contact. Also, it lefts implicit that package A is closer to the end of the ramp than package B.
If I understood the problem correctly, it is necessary to see whether packages A and B will be always next to each other during the motion (if they weren't, then you could simply treat the problem as if package A was alone). Since B's mass is bigger, its weight is bigger, so it would move faster if it were alone in the ramp; so they will be always next to each other during the motion.
I would solve this problem this way: first, I would draw a sketch of the situation, a free-body diagram representing all the forces acting on package A (four forces: weight, friction, contact force from package B pushing on it --as cepheid said--, and the normal force that the ramp exerts on the package -which has the same direction and opposite orientation to one component of the weight).
Secondly, I would decompose weight, "cancel" what needs to be canceled and see what is the net force. Then, find the acceleration and, since I have distance and acceleration, find the time.
 

Similar threads

Replies
3
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
9K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K