Integral with different variables

Click For Summary
The discussion revolves around performing an integral involving multiple variables, specifically r2, theta2, and phi2, with a focus on the term under the square root causing confusion. Participants clarify that the integral can be approached by integrating each variable separately, and the order of integration can be flexible if the integrand is continuous. The concept of iterated integrals is introduced, highlighting the importance of the order of integration when the integrand is not continuous. Fubini’s Theorem is mentioned as a guideline for reversing the order of integration under certain conditions. Overall, the consensus is that for this specific integral, starting with theta2 may be the most straightforward approach.
Viona
Messages
49
Reaction score
12
Homework Statement
Integral with different variables
Relevant Equations
Integral with variables
I want to do this integral in the picture:
Untitled.png

where r1 and a are constants. I know I can integrate each part separately. There will be an integral with respect to r2 multiplied by integral with respect to theta2 and the last one with respect to phi2. But the term under square root confuses me. Can I integrate it with r2 part considering theta2 constant or integate it with theta2 part considering r2 constant?
 
Physics news on Phys.org
Change of variable ##t=\cos\theta## would make
\int_{-1}^1 \frac{dt}{\sqrt{A-Bt}}
Does it make sense ?
 
anuttarasammyak said:
Change of variable ##t=\cos\theta## would make
\int_{-1}^1 \frac{dt}{\sqrt{A-Bt}}
Does it make sense ?
Yes. it seems good. But I want to ask: for this type of integral does the order matter? I should start by integrating w.r.t. r2 first or it is optional?
 
scottdave said:
Yes, see this for more clarification - https://tutorial.math.lamar.edu/Classes/CalcIII/IteratedIntegrals.aspx

Check out the example problems (with solutions)
That was helpful. Thanks. I learned that this type of integrals are called iterated integrals. For this type of integral the order is important particularly when the integrand is not continuous on the domain of integration. Then I found a theorem called Fubini’s Theorem. I understood that we can reverse the order if the integrand is continuous on the domain of integration. Now I am wondering how to check if the function is continous or not?
 
Viona said:
But I want to ask: for this type of integral does the order matter? I should start by integrating w.r.t. r2 first or it is optional?
Why don' you try integration by ##\theta## at first. The order should not matter for this exercise at least.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...