Integration of even powers of sine and cosine

lydia_y620
Messages
8
Reaction score
1

Homework Statement


upload_2017-11-7_14-14-38.png


Homework Equations


cos2x = (1+cos2x)/2
sin2x = (1-cos2x)/2

The Attempt at a Solution


I believe you would use the double angle formula repeatedly but that is very tedious; is there a more concise way to solve the problem?
 

Attachments

  • upload_2017-11-7_14-14-38.png
    upload_2017-11-7_14-14-38.png
    11.1 KB · Views: 3,434
Physics news on Phys.org
What about using ##cos^2x + sin^2x =1##?
 
PeroK said:
What about using ##cos^2x + sin^2x =1##?
okay, I've figured it out. Thanks!
 
  • Like
Likes PeroK
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top