Interesting Electric Field and Spring Problemf

AI Thread Summary
The discussion revolves around a physics problem involving a block with mass m and charge +Q connected to a spring in a uniform electric field. The maximum expansion of the spring is determined to be 2QE/k, while the equilibrium position of the block is found to be half of this maximum expansion, where the electric force equals the spring's restoring force. The block's motion is identified as simple harmonic, and the participants are working through the calculations to confirm the period of this motion. The relationship between the potential energy of the spring and the work done by the electric force is emphasized for solving part (a). This problem illustrates the interplay between electric forces and spring dynamics in a frictionless environment.
caesius
Messages
22
Reaction score
0

Homework Statement


A block having mass m and charge +Q is connected to an insulating spring having constant k. The block lies on a frictionless, insulating horizontal track, and the system is immersed in a uniform electric field of magnitude E as shown in the diagram. If the block is released from rest when the spring is unstretched (at x = 0),

(a) by what maximum amount does the spring expand?
(b) what is the equilibrium position of the block
(c) show that the block's motion is simple harmonic and determine its period
(d) repeat (a) assuming that the coefficient of kinetic friction between the block and the surface is mew K.

http://img513.imageshack.us/img513/3959/physprobzm4.png

Homework Equations


a few, F = qE = ma = -kx

The Attempt at a Solution



I'm only starting to attempt part (a), the block has a force QE to the right and a restoring force kx to the left.

So I equated the forces thus: QE = kx and solved for x to obtain x = QE/k.

This isn't the solution for (a), but it is for (b). The solution for (a) is 2QE/k

It's driving me crazy trying to find where the 2 came into calculations. Working backwards from (b) I see that the equilibrium position is half of the maximum expansion. But how so?
 
Last edited by a moderator:
Physics news on Phys.org
Right, that's the answer for B because at the equilibrium position, the restoring force of the spring is equal to the electric force. That's why at equilibrium, Fnet is 0 so the acceleration of the block is also zero.

For part A, consider the relationship between the potential energy of the spring at the point of furthest expansion and the work the electric force must do to get the block to that point.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top