Line of charge and conducting sphere (method of images)

thedddmer
Messages
1
Reaction score
0
Homework Statement
Need to use method find the geometrical place of the images and the charge density of an infinite line of charge and a conducting sphere
Relevant Equations
so the problem is only to find a segment of the line of charge inside the sphere, should be and kind of egg shape image (at least is what someone told me)
I was thinking of using the sphere and point charge as an analog, but is quite diferent from what i have seen
 
Physics news on Phys.org
thedddmer said:
I was thinking of using the sphere and point charge as an analog,
OK

thedddmer said:
but is quite diferent from what i have seen
An infinitesimal element of the line charge can be treated as a point charge. Sketch a diagram of the situation and consider an arbitrary element of the line charge.
 
https://en.wikipedia.org/wiki/Circles_of_Apollonius

The alternative definition of a circle: the set of all points whose ratio of distances from two points is a fixed constant.

After all the potential of two (equal but opposite line charges) is

##\frac{\lambda}{2 \pi \epsilon_0} \ln \frac{r_1}{r_2}##

If that is a constant

then

##\frac{r_1}{r_2}## is also constant
 
PhDeezNutz said:
The alternative definition of a circle: the set of all points whose ratio of distances from two points is a fixed constant.

I'm having a hard time relating this to the infinite line charge and conducting sphere. I do find that the image curve is a circle.

But I haven't yet figured out how Apollonius' definition of a circle helps in this problem.
 
TSny said:
I'm having a hard time relating this to the infinite line charge and conducting sphere. I do find that the image curve is a circle.

But I haven't yet figured out how Apollonius' definition of a circle helps in this problem.

Oh wow I totally misread the OP. I thought OP wanted to know the image of an infinite line charge inside a cylinder. And wanted to use the point charge image inside a sphere as an analog.

Welp.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top