Magnitute and Direction of Electric Field Based on Particle

AI Thread Summary
The discussion focuses on calculating the magnitude and direction of the electric field acting on a positively charged particle that accelerates upward. Initially, the participant calculated the electric field using the formula E=ma/q, resulting in an incorrect value. Upon realizing that gravitational force also affects the particle, they adjusted their calculations to account for gravity, leading to a new acceleration value. This adjustment resulted in a corrected electric field strength of 760 N/C, with the direction confirmed as upward due to the positive charge of the particle. The conversation highlights the importance of considering all forces acting on a particle in physics problems.
Slightly Odd Guy
Messages
11
Reaction score
0

Homework Statement


A positively charged particle initially at rest on the ground accelerates upward to 180 m/s in 2.70 s .The particle has a charge-to-mass ratio of 0.100 C/kg and the electric field in this region is constant and uniform.

What are the magnitude and direction of the electric field?

Express your answer to two significant digits and include the appropriate units. Enter positive value if the electric field is upward and negative value if the electric field is downward.

Homework Equations


What I consider to be the relevant equations:
F=ma
E=F/q
E=ma/q

The Attempt at a Solution


The acceleration, a, is (180m/s)/2.70s=66.67m/s^2

Plugging that into E=ma/q, we get E=m(66.67m/s^2)/q. Since the charge-to-mass ratio is 0.100 C/kg, I figure we can use the reciprocal, 10 kg/C, and use that as m/q.

Which means we get (10kg/C)(66.67m/s^2) = 666.7 N/C.

As for the direction of E, the particle is positively charged and accelerating upward, so it's clear there is a positive field propelling the + charged particle upward. Since electric field always goes from positive to negative, the field is pointed upward, so E is positive.

Rounding for two significant digits, we get 670 N/C.

The only problem is that this answer is wrong. I've also tried 667 N/C and 666.67 N/C just for kicks, and those were also, predictably, wrong. It seems like this should be a really easy problem, which is why it's so frustrating. What am I missing? Am I totally off-base?

Thanks for your help and time,

Matt
 
Physics news on Phys.org
Slightly Odd Guy said:
Plugging that into E=ma/q,
There are two forces acting on the particle, not just one!
 
Gravity! Of course!

So now 67m/s2 = aE -g => aE = 76 m/s2

Which gives us E=(m/q)(76m/s2)=(10kg/C)(76m/s2) = 760 N/C

Thank you very much, rude man!
 
Slightly Odd Guy said:
Gravity! Of course!

So now 67m/s2 = aE -g => aE = 76 m/s2

Which gives us E=(m/q)(76m/s2)=(10kg/C)(76m/s2) = 760 N/C

Thank you very much, rude man!
Big 10-4, odd guy!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top