Calculating Area of Lemniscate Polar Coordinates | Integral Method

future_phd
Messages
19
Reaction score
0

Homework Statement


Find the area inside the lemniscate r = 2sqrt(sin(2theta))



Homework Equations


Integral from a to b of (1/2)[f(theta)]^2 d(theta)



The Attempt at a Solution


I tried integrating from 0 to 2pi and got an area of 0. Then I tried integrating from 0 to pi and still got an area of 0. I looked at the answer and they integrated from 0 to pi/2 and then multiplied the integral by 2. I don't understand why they chose to integrate from 0 to pi/2 or why they multiplied the integral by 2? Any help would be greatly appreciated.
 
Physics news on Phys.org
y = sin(2x) has a complete cycle between 0 and pi. If you wanted the area between this curve and the x-axis, it wouldn't do you any good to integrate between 0 and pi -- you would get 0. So instead you would integrate between 0 and pi/2 to get the area under one arch, and then double it, to get the area of both regions.

A similar thing is happening with your polar curve.
 
Ahh that makes sense, thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top