It all depends on the OP's setup. To me it sounded like he was hoping that simply reducing pressure fluctuations in the oil would reduce the oil temperature. I don't think that makes much sense, personally. For one, the oil is almost certainly incompressible, so there is not likely a link between pressure and temperature like there is in a gas, so the pressure fluctuations themselves wouldn't likely be able to change the temperature of the oil. Given, I am not all that familiar with the equations of state of oils, but I do know that for other liquids like water, when an equation of state is needed (e.g. modeling an underwater nuclear explosion, which actually can compress water slightly), there is no temperature involved, just pressure and density.
As far as linking the pressure fluctuations to turbulence goes, I would imagine that the engine would be hotter than the oil to begin with, so making that flow turbulent would likely just cause the oil to get hotter. Further, the viscosity of oil is so high while the density and the velocity are so low that I can't imagine a scenario where you could actually get a turbulent oil flow in an engine. For example, 10W-40 oil at 100°C has a kinematic viscosity of 0.0000143 m²/s, so to even reach the transitional Reynolds number in pipe flow you would need like 2.74 m/s going through a 15 mm pipe (corresponding roughly to 1/2 NPS SCH 40 pipe, which I believe is a little large for oil flow). A smaller pipe would require more velocity to get to the proper Reynolds number. Typically, oil flow into engines is measured in drops per minute, so I highly doubt you would ever see that kind of velocity through your pipes, so I really doubt there is any hope of having a turbulent oil flow through an engine in the first place.