Rotational Motion of a Square Arrangement of Spheres

AI Thread Summary
The discussion centers on calculating the moment of inertia for a system of four spheres arranged in a square. The user successfully solved part A using the parallel axis theorem and suggested finding the radius by bisecting the square. For part B, they proposed using half the side length as the radius but were uncertain about the appropriate moment of inertia equation. The user expressed frustration with rotational motion concepts and sought further guidance for parts B and C. Overall, the thread highlights the challenges of applying rotational motion principles to this specific problem.
totalmajor
Messages
12
Reaction score
0
[SOLVED] Rotational Motion

Homework Statement



Four small spheres, each of which you can regard as a point of mass m = 0.170 kg, are arranged in a square d = 0.250 m on a side and connected by light rods (Fig. 9.27).

(a) Find the moment of inertia of the system about an axis through the center of the square, perpendicular to its plane (an axis through point O in the figure).

(b) Find the moment of inertia of the system about an axis bisecting two opposite sides of the square (an axis along the line AB in the figure).
wrong check mark kg·m2

(c) Find the moment of inertia of the system about an axis that passes through the centers of the upper left and lower right spheres and through point O.
wrong check mark kg·m2

http://irollerblade.org/pics/physics.JPG

Homework Equations



I=MR^2
I=I+MR^2 (Parallel axis theorem)



The Attempt at a Solution



Okay, so Rotational Motion was never my one of my favorite units, I always HATED doing it. I tried several things to get this problem right, but nothing worked!

I know about the center of mass equation too, but that just makes everything = 0!

Originally i tried working out the problem by finding the center of mass on both ends, then finding the moment of inertia through the center using the parallel axis theorem, which obviously didn't work.

Anybody have any suggestions?
Thanks
 
Last edited by a moderator:
Physics news on Phys.org
For part A I'm going to throw out an idea. I would try finding R by bisecting the square which would be d rt2. Then I would divide that in 2 to get the radius of each mass from the center O. Then you can treat each ball separately as a mass concentrated at the end of a weightless string from O and add them to find the I for the whole system. I dunno, give it a try maybe.
 
Hey I figured out A (thanks)
But B and C , I am a loss for
 
I think for Part B, you can use one half of D which is .125 as the r value and the m value is just .250. I'm not sure what moment of inertia equation you would use though, so you need to check that, but I don't think it would be MR^{}2 because that's for cylindrical shells.
 
Got it!
Thanks alot!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top