Second Law of Thermodynamics - heat pumps and air conditioners

AI Thread Summary
The discussion revolves around calculating the effective coefficient of performance (COP) for a heat pump functioning as an air conditioner, with a COP at 35% of the Carnot efficiency. The user initially converted the heat removal rate from Btu to joules and attempted to calculate the ideal COP using the provided temperature values, arriving at 1.05, which they doubted was correct. They then multiplied this value by 0.35 but received an incorrect result for part a of their homework. The conversation seeks clarification on the proper method to determine the effective COP and the power required for the compressor motor. Accurate calculations and understanding of thermodynamic principles are essential for resolving these queries.
elcaptain
Messages
5
Reaction score
0

Homework Statement


A heat pump operates as an air conditioner, drawing 20000 Btu per hr from a building. It is operating between 21 degrees Celsius and 41 degrees Celsius.

a) If the COP (coefficient of performance) is 35% that of a Carnot air conditioner, what is the value of the effective COP (coefficient of performance)?

b) What is the value of the power (Watts) required for the compressor motor?

Homework Equations


QL = heat removed from the low temperature area (inside the building)
QH = heat removed from the high temperature area (outside the building)
W = work done to remove the heat
TL = temperature of system at lower temperature (inside the building)
TH = temperature of system at higher temperature (outside the building)

COP = QL/W

COP = QL/(QH - QL)

COPideal = TL / (TH - TL)

The Attempt at a Solution


I first converted Btu (British thermal unit) to joules: 1Btu = 1055.056 J. Then I tried finding the ideal COP by using the above equation with the given temperatures and got 1.05, but I'm pretty sure the ideal COP is not calculated this way. I tried multiplying 1.05 by 0.35 but got the wrong answer for part a. Thanks for any help.
 
Physics news on Phys.org
anything?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top