Slip Conditions for flow between Parallel Plates

AI Thread Summary
The discussion focuses on analyzing slip conditions between two parallel plates, where the top plate moves with velocity V and the bottom plate is stationary. The initial approach involved calculating shear stress and velocity gradients, considering the impact of slip at both plates. Participants clarified that under slip conditions, the effective height increases due to the slip distance, leading to a modified shear rate equation. The final formulation for shear rate incorporates the slip effects, resulting in a new expression for shear rate as γ = (V/h) / (1 + 2l/h). This highlights the importance of accounting for slip in fluid dynamics between parallel plates.
SebastianRM
Messages
39
Reaction score
4
Homework Statement
A) Analyze velocity profile
B) Determine shear stress at both walls
Relevant Equations
Fluid flow between two parallel plates with slip of,
$$ \delta u \approx l (du/dy)$$
The problem states:

Two parallel plates separated by distance h, the plate at the top moves with velocity V, while the one at the bottom remains stationary.

My initial approach was:

I considered, ##du/dy = V/h## and for the shear stress ##\tau = \mu \frac{\partial u}{\partial y}##

For $$\frac{\partial u}{\partial y} = \frac{U_{top}-U_{bottom}}{h}$$

Where I considered the fluid's velocity at the top plate to be, ##U_{top} = V - \delta u## , and at the bottom, ##U_{bot} = 0 + \delta u##.

In order to improve my understanding, I searched for a diagram that illustrated the phenomena, which shows (apologies for the low quality) :
Screen Shot 2021-01-19 at 7.05.36 PM.png


This ##b## distance in the diagram is the ##l## of my equation at the top. So I am wondering if it should be included as part of the ##dy## term, as ##dy = h - l## or should it be part of the ##\partial y = h - l ## or if my original analysis was correct?

Thanks a lot guys, your time and help are very appreciated.
 
Physics news on Phys.org
The velocity at the top is V and the velocity at the base is 0. Forget the diagram. The shear rate is V/h.
 
  • Like
Likes BvU
Chestermiller said:
The velocity at the top is V and the velocity at the base is 0. Forget the diagram. The shear rate is V/h.

That is for no-slip condition, this is Slip condition. The velocity at the top is not V, because there is slip. Same at the bottom, the fluid is not attached to the plate, as there is slip.
 
Can you render the actual problem statement in full?:
 
BvU said:
Can you render the actual problem statement in full?:
The diagram says *No-slip* but that is a typo (the teacher said so).
Screen Shot 2021-01-20 at 4.53.13 PM.png
 
  • Like
Likes Delta2
I see. In that case your picture is sensible and something similar occurs at the top plate.

Effectively ##h## is increased by ##2b##. Arguing that ##\tau## is a one-side derivative is thin ice, but I suppose that's what is meant.
 
  • Like
Likes SebastianRM
BvU said:
I see. In that case your picture is sensible and something similar occurs at the top plate.

Effectively ##h## is increased by ##2b##. Arguing that ##\tau## is a one-side derivative is thin ice, but I suppose that's what is meant.
I see, that makes sense. Would you say du/dy is the usual slope V/h ? While ##\partial u / \partial y ## accounts for the velocity V affected by slip and the "new" height, such that ## (V - 2\delta u)/(h + 2b) ## ?
 
Not both.
 
I get a fluid velocity at y = 0 of ##u(0)=l\gamma##, where ##\gamma## is the shear rate. And, at y = h, I get a fluid velocity of ##u(h)=V-l\gamma##. So, for the shear rate, I get $$\gamma=\frac{u(h)-u(0)}{h}=\frac{(V-l\gamma)-l\gamma}{h}=\frac{V-2l\gamma}{h}$$Solving for ##\gamma## gives:$$\gamma=\frac{V/h}{\left(1+2\frac{l}{h}\right)}$$
What do you guys think?
 
  • Informative
Likes SebastianRM
  • #10
Chestermiller said:
I get a fluid velocity at y = 0 of ##u(0)=l\gamma##, where ##\gamma## is the shear rate. And, at y = h, I get a fluid velocity of ##u(h)=V-l\gamma##. So, for the shear rate, I get $$\gamma=\frac{u(h)-u(0)}{h}=\frac{(V-l\gamma)-l\gamma}{h}=\frac{V-2l\gamma}{h}$$Solving for ##\gamma## gives:$$\gamma=\frac{V/h}{\left(1+2\frac{l}{h}\right)}$$
What do you guys think?
That is correct Sir, I think. By doing ##\delta u = \ell du/dy = \ell V/(h+2l) ## we can arrive to the same form.
Thank you!
 
Back
Top