Surface integral, spherical coordinates, earth

HmBe
Messages
45
Reaction score
0

Homework Statement



Find the surface area of the Earth (as a fraction of the total surface of the earth) that lies above 50 degrees latitude North.




Homework Equations



$$A = \int_R\sqrt{|\det(g)|}d\theta d\phi$$


The Attempt at a Solution



Hence I get

$$\int_0^{360} \int_{50}^{90} r^2 \sin(\theta) d\theta d\phi$$

Which gives 0.321 as the answer, which just isn't right. The actual answer I know should be 0.117, or

$$\frac{1-\sin(50)}{2}$$

I'm sure something must be wrong with my integral, but I can't figure out what.
 
Physics news on Phys.org
HmBe said:

Homework Statement



Find the surface area of the Earth (as a fraction of the total surface of the earth) that lies above 50 degrees latitude North.




Homework Equations



$$A = \int_R\sqrt{|\det(g)|}d\theta d\phi$$


The Attempt at a Solution



Hence I get

$$\int_0^{360} \int_{50}^{90} r^2 \sin(\theta) d\theta d\phi$$

Which gives 0.321 as the answer, which just isn't right. The actual answer I know should be 0.117, or

$$\frac{1-\sin(50)}{2}$$

I'm sure something must be wrong with my integral, but I can't figure out what.

In the northern hemisphere, the spherical polar coordinate \theta is equal to 90^{\circ} minus the latitude. Thus the correct limits of the \theta integral are 0 and 40^{\circ}.
 
  • Like
Likes 1 person
You're a hero, I have mental problems. Thank you so much.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top