This is certainly not any "neater" than the substitution I recommended in post #34, ##r=r_0sin^2θ##, since, if ##r=\frac{r_0}{sec^2 \theta}##, then ##r=r_0cos^2θ##, which is essentially the same substitution. Your θ is just π/2 minus my θ. In posts #50, and 66-70, rcgldr employed my substitution, and obtained the same results you have obtained. Your parameter λ is exactly the same as your parameter θ. If you substitute ##π/2-θ## (Chet's θ) for λ in your final equation, you get rcgldr's results.Using a Taylor series expansion is definitely not the way to solve this non-linear algebraic equation for r as a function of t. There are numerous methods available for numerical solution, including the half-interval technique and Newton's method. (Of course, you could say that Newton's method involves expanding to the linear term in a Taylor series, but this is not what I think you had in mind.)
If I wanted r as a function of t, I would just make a table of t(r) vs. r, and plot t as the abscissa and r as the ordinate.
Chet