Understanding the Exit Pressure of Nozzles in Thermodynamics

AI Thread Summary
Fluid exiting a nozzle experiences a drop in pressure due to the acceleration of flow, which requires a lower exit pressure than the inlet pressure. The misconception that reducing cross-sectional area increases pressure is clarified by understanding that in a nozzle, the pressure gradient drives the fluid toward the exit. While mechanical systems may show increased pressure with reduced area, this does not apply to fluid dynamics in nozzles. The pressure remains constant throughout a nozzle if the fluid is static, but as it accelerates, the pressure decreases. Understanding these principles is crucial for grasping thermodynamic behavior in nozzle applications.
scottymo
Messages
7
Reaction score
0
Hi There,

Im studying thermodynamics at the moment and there's one statement about nozzles that I just haven't been able to understand. In my mind when a fluid exits a nozzle it would have a higher pressure than the inlet. Could someone please explain in what sense the pressure of a fluid drops as it goes through a nozzle? Are they talking total pressure over an area? my book doesn't explain why just makes that statement.

Thanks in advance
 
Engineering news on Phys.org
Why would the fluid have a higher pressure at the exit than the inlet? The whole point of a nozzle is that it accelerates the flow. In order for the flow to accelerate, the pressure gradient through the nozzle must be such that the fluid feels a force towards the exit, requiring a lower exit pressure than inlet pressure.
 
  • Like
Likes scottymo
cjl said:
Why would the fluid have a higher pressure at the exit than the inlet? The whole point of a nozzle is that it accelerates the flow. In order for the flow to accelerate, the pressure gradient through the nozzle must be such that the fluid feels a force towards the exit, requiring a lower exit pressure than inlet pressure.
I don't know why, I'm clearly wrong on that thought so I'm looking for insight to set my thought process straight on the matter. Maybe its just been beaten into my head to long that you increase pressure when you reduce area. What you say about about the flow seeking lower pressure does however make a lot of sense.
 
Out of curiosity, in what context did you hear that you increase pressure when you reduce area? It's certainly not generally true. I'm sorry I'm not giving more detailed answers here, but I really don't understand exactly where your confusion is arising from, so it's hard to address it. I'd love to go into more detail though if you tell me what specifically I should expand on...
 
cjl said:
Out of curiosity, in what context did you hear that you increase pressure when you reduce area? It's certainly not generally true. I'm sorry I'm not giving more detailed answers here, but I really don't understand exactly where your confusion is arising from, so it's hard to address it. I'd love to go into more detail though if you tell me what specifically I should expand on...
Well say you take a mechanical advantage piston setup or or the footprint of a column, reducing the area on one of the pistons or at the end of the column will cause a rise in pressure at that point. Thats what I'm used to at least. Now in my mind when I picture a nozzle I see a volume of fluid going in at a certain rate, now the cross sectional area reduces as it travels through meaning less volume for that fluid to occupy, it just makes sense in my head because of this that the pressure of the fluid increases as it travels through the nozzle. I am having trouble getting rid of that notion.
 
scottymo said:
Well say you take a mechanical advantage piston setup or or the footprint of a column, reducing the area on one of the pistons or at the end of the column will cause a rise in pressure at that point. Thats what I'm used to at least. Now in my mind when I picture a nozzle I see a volume of fluid going in at a certain rate, now the cross sectional area reduces as it travels through meaning less volume for that fluid to occupy, it just makes sense in my head because of this that the pressure of the fluid increases as it travels through the nozzle. I am having trouble getting rid of that notion.

Ahh. This would be correct if you have a smaller piston with the same force applied. However, think instead if that reduction happened in the fluid itself (so you had a large piston, then the fluid reduced down to a smaller diameter below it). Now the pressure in the small diameter region is the same as the large diameter reason (I'm ignoring gravity here). This is more analogous to the nozzle case, where the reduction happens in the fluid itself. If you have a nozzle with static fluid throughout, the pressure will be the same throughout, just as in this piston case. Make sense so far?
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Back
Top