Legion81
- 68
- 0
I have been told that L and P^2 do not commute, but I don't see why. It seems like the commutator should be zero.
<br /> <br /> \left[ \vec{L} , P^2 \right] = \left[ L^k , P_i P_i \right]<br /> = \left[ L_k , P_i \right] P_i - P_i \left[ L_k , P_i \right]<br /> = \left( - i \hbar \epsilon_{i}^{km} P_m \right) P_i - P_i \left( - i \hbar \epsilon_{i}^{km} P_m \right) <br /> = - i \hbar \epsilon_{i}^{km} \left( P_m P_i - P_i P_m \right) <br /> = - i \hbar \epsilon_{i}^{km} \left[ P_m , P_i \right] <br /> = 0<br /> <br />
What is wrong with this?
<br /> <br /> \left[ \vec{L} , P^2 \right] = \left[ L^k , P_i P_i \right]<br /> = \left[ L_k , P_i \right] P_i - P_i \left[ L_k , P_i \right]<br /> = \left( - i \hbar \epsilon_{i}^{km} P_m \right) P_i - P_i \left( - i \hbar \epsilon_{i}^{km} P_m \right) <br /> = - i \hbar \epsilon_{i}^{km} \left( P_m P_i - P_i P_m \right) <br /> = - i \hbar \epsilon_{i}^{km} \left[ P_m , P_i \right] <br /> = 0<br /> <br />
What is wrong with this?