$$f(x,y)=
\begin{cases}
4(x+y^2),&\text{if x > 0, y > 0, x + y < 1} \\
0, &\text{elsewhere} \\
\end{cases}$$
Find two different integral expressions for P(y > x)
(1) $$\int_{0} ^{1/2}\int_{0} ^y 4(x+y^2),dx\,dy + \int_{1/2} ^{1}\int_{0} ^{1-y} 4(x+y^2),dx\,dy $$
(2) $$\int_{0} ^{1/2}\int_{x}...