Let's say we have a system of two point particles that can interact with each other by forces that are position and velocity dependent. The forces might or might not be derivable from a generalized potential.
Assuming Isotropy of space and homogeneity of space and time, what are the constraints...
Hi.
In Newtonian physics, total mass is conserved, but open systems can obviously gain or lose mass, such as a rocket. But how can the term ##\dot{m}v## be Galilean invariant?
Homework Statement
Given an isolated system of 2 particles in space, we can express the motion of both particles as follows:
$$m_1\ddot{\vec{x_1}}=-\frac\partial{\partial \vec{x_{1}}} V(\vec{x_1},\vec{x_2})\\
m_2\ddot{\vec{x_2}}=-\frac\partial{\partial \vec{x_2}} V(\vec{x_1},\vec{x_2}),$$ where...
Homework Statement
Imagine two inertial frames, S and S'. Inertial frame S' moves with velocity v0 = 5 m = s in the upward (positive y) direction as seen by an observer in frame S. Now imagine that a person at rest in frame S throws a ball with mass m straight up into the air with initial...