I spent some time studying the spacetime diagram for this plate and battery setup. To help me see it better, I doubled the rest lengths, shifted the start position and time to put the "middle" of the process at the origin, and added some time projection lines. The improved diagram is below. (I also found that saving the screenshot as a png avoids the smearing effect that I had with jpg.)
I'll make two observations now.
1. By what I consider the most natural reading of the referenced paper, the authors are saying that, in a given frame, an electrical signal will come into existence only when both terminals are in contact with the plate. In this scenario, that happens only in the rest frame of the plate. Therefore, an electrical signal exists in one frame but not the other. That cannot happen. In the OP, I called this a paradox. Now, I'll just call it incorrect. Perhaps the authors meant something else; then my complaint does not apply. As to whether they were thinking of retarded potential, perhaps they were. I don't think that changes the outcome of an em wave in one frame but not the other, based on what they actually said in the paper.
2. I was clearly wrong when I said that a terminal could be in contact with the plate in one frame but not the other. I saw that two days ago as I prepared my response to PeterDonis. What I was not able to do at that time was visualize the "combined" process, as opposed to two separate and independent processes. That's not a very good way to say what I have in mind, but that will have to do for now.
Looking at a specific event on the spacetime diagram, I can give you an idea of what I meant about one reality for the two frames, down to the particle level. (I don't refer to QED; I have a big enough headache already--and no desire to put my foot deeper into my mouth.)
At the origin of the spacetime diagram:
a) In the rest frame of the plate, both terminals have been in contact with the plate for some time.
b) In the rest frame of the battery, neither terminal has been in contact with the plate for some time.
Given the complexity of the problem, I am
not going to say that current is flowing in the rest frame of the plate, but no current is flowing in the rest frame of the battery. Indeed, I am not going to make any prediction at all about the state of the plate.
What I will do is point out that in both frames the positive terminal (only) was in contact with the plate for some time, and thus some amount of charge passed into the plate. In the rest frame of the plate, when the second terminal comes into contact, the plate is already "primed" with charge, and thus the flow of charge would tend to increase. On the other hand, in the rest frame of the battery, when the terminal loses contact with the plate the flow of charge would tend to decrease.
I understand enough about inductance to know that sudden changes in current are resisted; not to mention the other complexities that have been talked about. So I am not making any disparaging remarks about relativity. What I am pointing out is that it is not at all obvious to someone who is not on the "inside" that everything will work out in practice so that when the state of the field in the plate is calculated from the perspective of the rest frame of the plate, it will match (after transformation) the state calculated from the perspective of the rest frame of the battery.
On the other hand, there is not much in this hypothetical case that is practical. So there is no point in getting too worked up about it. The only comment I can make of practical value is to suggest that physics textbooks for beginners would do better not to gloss over obvious difficulties. At the least, simplifications should be stated as assumptions.