Calculating Area of Lemniscate Polar Coordinates | Integral Method

future_phd
Messages
19
Reaction score
0

Homework Statement


Find the area inside the lemniscate r = 2sqrt(sin(2theta))



Homework Equations


Integral from a to b of (1/2)[f(theta)]^2 d(theta)



The Attempt at a Solution


I tried integrating from 0 to 2pi and got an area of 0. Then I tried integrating from 0 to pi and still got an area of 0. I looked at the answer and they integrated from 0 to pi/2 and then multiplied the integral by 2. I don't understand why they chose to integrate from 0 to pi/2 or why they multiplied the integral by 2? Any help would be greatly appreciated.
 
Physics news on Phys.org
y = sin(2x) has a complete cycle between 0 and pi. If you wanted the area between this curve and the x-axis, it wouldn't do you any good to integrate between 0 and pi -- you would get 0. So instead you would integrate between 0 and pi/2 to get the area under one arch, and then double it, to get the area of both regions.

A similar thing is happening with your polar curve.
 
Ahh that makes sense, thank you!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top