Calculating Area of Lemniscate Polar Coordinates | Integral Method

AI Thread Summary
To find the area inside the lemniscate defined by r = 2√(sin(2θ)), the correct approach is to integrate from 0 to π/2 and then multiply the result by 2. Attempts to integrate from 0 to 2π or 0 to π yielded an area of 0 due to the nature of the sine function, which completes a cycle between 0 and π. This method captures the area under one arch of the curve, allowing for accurate calculation of the total area. Understanding the symmetry of the lemniscate is crucial for correctly applying the integral method. The discussion clarifies the reasoning behind the chosen limits of integration and the multiplication factor.
future_phd
Messages
19
Reaction score
0

Homework Statement


Find the area inside the lemniscate r = 2sqrt(sin(2theta))



Homework Equations


Integral from a to b of (1/2)[f(theta)]^2 d(theta)



The Attempt at a Solution


I tried integrating from 0 to 2pi and got an area of 0. Then I tried integrating from 0 to pi and still got an area of 0. I looked at the answer and they integrated from 0 to pi/2 and then multiplied the integral by 2. I don't understand why they chose to integrate from 0 to pi/2 or why they multiplied the integral by 2? Any help would be greatly appreciated.
 
Physics news on Phys.org
y = sin(2x) has a complete cycle between 0 and pi. If you wanted the area between this curve and the x-axis, it wouldn't do you any good to integrate between 0 and pi -- you would get 0. So instead you would integrate between 0 and pi/2 to get the area under one arch, and then double it, to get the area of both regions.

A similar thing is happening with your polar curve.
 
Ahh that makes sense, thank you!
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top