Determining Direction of Electric Field

AI Thread Summary
To calculate the electric field at one corner of a square with three positive charges at the other corners, the electric field intensity is determined using the formula E = (kQ)/(r^2). The calculated magnitudes for the electric fields from each charge are 9 x 10^5 N/C for E1 and E2, and 4.5 x 10^5 N/C for E3, with the total electric field being 1.8 x 10^6 N/C. The direction of the electric field at the corner is away from the center of the square, as all charges repel each other. Understanding the direction requires recognizing that the electric field from positive charges points outward, and visualizing the arrangement of the charges is crucial for clarity.
saintv
Messages
7
Reaction score
0
Determining Direction of Electric Field! :)

Homework Statement



Calculate the electric field at one corner of a square 50 cm on a side if the other three corners are occupied by 250 x 10^-7 C charges.

Homework Equations



E = (kQ)/(r^2)

Where:

E = Electric Field Intensity in (N/C)
k = Electrostatics Constant (9 X 10^9 Nm^2/C^2)
Q = Charge in (C)
r = separation in (m)

The Attempt at a Solution



Firstly, I calculated the E from one corner to each of the three charges:

E1 = [(9 x 10^9 Nm^2/C^2)(250 x 10^7 C)]/(.50m)^2
= 9 x 10^5 N/C (Not Sure of Direction)

E2 = [(9 x 10^9 Nm^2/C^2)(250 x 10^7 C)]/(.50m)^2
= 9 x 10^5 N/C (Not Sure of Direction)

E3 = [(9 x 10^9 Nm^2/C^2)(250 x 10^7 C)]/(.71m)^2
= 4.5 x 10^5 N/C (Not Sure of Direction)
(Note the change in r, as this is diagonal from the corner)

I then added the E.s up:

Etotal = E1 + E2 + E3
= (9 x 10^5 N/C) + (9 x 10^5 N/C) + (4.5 x 10^5 N/C)

Because E1 + E2 are not on the same plane, I would have to use Pythagoras to add the two, and then add it to E3. So,

Etotal = E1 + E2 + E3
= (9 x 10^5 N/C) + (9 x 10^5 N/C) + (4.5 x 10^5 N/C)
= (1.3 x 10^6 N/C) + (4.5 x 10^5 N/C)
= 1.8 X 10^6 N/C

Okay, wait. When I typed it out here and did all the calculations, I got the right answer! That's weird, considering every other time I did it it was wrong.

Anyway, I still have to determine the direction of the Electric Field.
In my answer key, it says: [AWAY FROM CENTER], which I do not understand. Is it because I am dealing with all positive charges, so they all repel each other?

I am simply terrible when it comes to determining direction, so please help!
 
Physics news on Phys.org


Also, if someone could help me out as to the direction of each E. Field where I note (Not Sure of Direction), that would be great as well!
 


Hi,

If you do not have a figure given, or drawn yourself, describing this problem, I urge you to draw one now. Like in many physics problems, you stand little chance of understanding what's going on without a figure. Do not try to follow this discussion any further without first having a figure, showing the 3 charges arranged at the corners of a square, in front of you.

saintv said:

The Attempt at a Solution



Firstly, I calculated the E from one corner to each of the three charges:

E1 = [(9 x 10^9 Nm^2/C^2)(250 x 10^7 C)]/(.50m)^2
= 9 x 10^5 N/C (Not Sure of Direction)

E2 = [(9 x 10^9 Nm^2/C^2)(250 x 10^7 C)]/(.50m)^2
= 9 x 10^5 N/C (Not Sure of Direction)

E3 = [(9 x 10^9 Nm^2/C^2)(250 x 10^7 C)]/(.71m)^2
= 4.5 x 10^5 N/C (Not Sure of Direction)
(Note the change in r, as this is diagonal from the corner)
The direction of each field is away from the charge you are using to calculate it. This means each E is in a different direction, and in particular E3 is diagonal, away from the charge in the opposite corner.

I then added the E.s up:

Etotal = E1 + E2 + E3
= (9 x 10^5 N/C) + (9 x 10^5 N/C) + (4.5 x 10^5 N/C)
Note, since the E's act in different directions you should be adding them as vectors, not simply adding their magnitudes as you are indicating here.

Because E1 + E2 are not on the same plane, I would have to use Pythagoras to add the two, ...
Actually it is because E1 and E2 are at a right angle to one another that you are allowed to use Pythagoras here. In fact, all three E's are in the same plane, the plane of the square.

... and then add it to E3. So,
Okay because the vector result E1+E2 happens to be in the same (diagonal) direction as E3.
Etotal = E1 + E2 + E3
= (9 x 10^5 N/C) + (9 x 10^5 N/C) + (4.5 x 10^5 N/C)
= (1.3 x 10^6 N/C) + (4.5 x 10^5 N/C)
= 1.8 X 10^6 N/C

Okay, wait. When I typed it out here and did all the calculations, I got the right answer! That's weird, considering every other time I did it it was wrong.

Anyway, I still have to determine the direction of the Electric Field.
In my answer key, it says: [AWAY FROM CENTER], which I do not understand. Is it because I am dealing with all positive charges, so they all repel each other?
They mean the field's direction, at the corner, is away from the center of the square. I.e., diagonally outward.
I am simply terrible when it comes to determining direction, so please help!
There are only two rules to keep in mind to figure out direction:
1. The field of a positive point charge is directed away from that charge.
2. The field of a negative point charge is directed towards that charge.​
In this problem the 3 charges are all positive, so each field E1, E2, E3 is directed away from the respective charge.

Hope that helps. Again, you do need to have a figure in front of you to understand this discussion.
 


Thank you! It was very thorough, and easy to understand! :)
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top