Electric fields created by charged particles

AI Thread Summary
The discussion focuses on calculating the electric fields created by three charged balls, with specific charges of Q1 = 1 nC, Q2 = 5 nC, and Q3 = -2 nC. Participants provide calculations for the electric fields at the location of Q1 due to Q2 and Q3, as well as at location A due to each of the three charges. The formula used for these calculations is E = kq/r^2, where k is the permittivity of free space. Additionally, the discussion emphasizes the importance of using a consistent coordinate system and correctly applying vector notation. The calculations illustrate the interactions between the charged particles and their resultant electric fields.
perfection256
Messages
4
Reaction score
0

Homework Statement



2d9cso3.jpg


At a particular moment, three small charged balls, one negative and two positive,are located as shown in Figure 13.46. Q1 = 1 nC, Q2 = 5 nC, and Q3 = -2 nC.

Remember that you must first convert all quantities to S.I. units. 1 nC = 1 nanocoulomb = 1e-9 C.

(a1) What is the electric field at the location of Q1, due to Q2?
(a2) What is the electric field at the location of Q1, due to Q3?


(c1) What is the electric field at location A, due to Q1?
(c2) What is the electric field at location A, due to Q2?
(c3) What is the electric field at location A, due to Q3?

(d) An alpha particle (He2+, containing two protons and two neutrons) is released from rest at location A. At the instant the particle is released, what is the electric force on the alpha particle, due to Q1, Q2 and Q3?

Homework Equations



|E|= kq/|r^2|

The Attempt at a Solution



(a1) (9e^9)(5x10^-9)/(.0016) *<0,.04,0>= <0,1125,0>
(a2) (9e^9)(-2x10^-9)/(.0009) * <.03,0,0>=<300,0,0>

(c1) (9e^9)(1x10^-9)/(.0009)* <.03,0,0>=<300,0,0>
(c2) (9e^9)(5x 10^-9)/(.0025)* <.03,.04,0>=<540,720,0>
(c3) (9e^9)(-2x 10^-9)/(.0016)* <0,.04,0)=<0,-450,0>
 
Physics news on Phys.org
The equation you need here is E = \frac{kq}{r^2} * \hat{r}, where k is the permitivity of free space.

\hat{r} represents the radial unit vector from the point charge to the point where you are calculating the electric field, and shouldn't have a magnitude. (I think your * < x,y,z> is indicating that you're multiplying by a magnitude, which would be incorrect).

Also, since this is a vector field, use their coordinate system and stay consistent.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top