Equipotential lines and electric field lines

ktb
Messages
45
Reaction score
0

Homework Statement


I am given the equation for the potential of an arbitrary dipole. I need to draw the electric field lines for this dipole in a plane, and also show that these lines are perpendicular to the equipotential lines. I have already derived the equation for the electric field using the gradient of the potential and mapped out the equipotential lines.



Homework Equations


V d i p ( ⃗r ) = Constant ⃗r ·p⃗ /(r^3)
E⃗ d i p = − ∇⃗ V d i p
= (Constant) 3( ⃗r · p⃗) ⃗r /(r^5) - p⃗/(r^3)
Take p⃗ to equal a unit vector for an orthonormal basis. Such as the unit vector for x in the x, y, z coordinate system.


The Attempt at a Solution


I know that the gradient of V is always perpendicular to V, so intuitively this makes complete sense. However, I do not know how to show that a scaler quantity (V) is perpendicular to the vector equation I derived for E. I am also unsure how to map such a strange function for E into ℝ2 although obviously I know what it looks like.
 
Physics news on Phys.org
Figured it out. Bad misunderstanding on my part about El. field lines.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top