How to show that Electric and Magnetic fields are transverse

AI Thread Summary
The discussion centers on understanding why the electric and magnetic fields in plane wave solutions are transverse, specifically why the dot products of the wave vector with these fields equal zero. The user expresses confusion regarding the implications of Maxwell's equations and the nature of the complex amplitude vectors. They question whether the divergence of the complex function is zero and seek clarification on the conditions leading to the transverse nature of the fields. The response clarifies that if the wave vector is real, then both components of the amplitude vectors must also be zero, confirming the transverse property. This highlights the relationship between the wave vector and the electric and magnetic field amplitudes in electromagnetic theory.
leonardthecow
Messages
35
Reaction score
0

Homework Statement


This isn't necessarily a problem, but a question I have about a certain step taken in showing that the electric and magnetic fields are transverse.

In Jackson, Griffiths, and my professor's written notes, each claims the following. Considering plane wave solutions of the form $$ \textbf{E}(\vec{x}, t) = Re[\vec{E_0}e^{-i(\vec{k} \cdot \vec{x} - \omega t)}] \\ \textbf{B}(\vec{x}, t) = Re[\vec{B_0}e^{-i(\vec{k} \cdot \vec{x} - \omega t)}]$$ since the Maxwell equations demand that the divergences of both E and B are zero, this in turn demands that $$\vec{k} \cdot \textbf{E} = 0 \\ \vec{k} \cdot \textbf{B} = 0.$$

Homework Equations



See above, plus the fact that ##\vec{E_0}## and ##\vec{B_0}## are complex functions.

The Attempt at a Solution


[/B]
This has to just be my missing something stupid; I just don't see how the plane wave solutions and the Maxwell equations imply that condition (where the wave vector dotted into the E and B fields is zero). Even doing the divergence out for, say, the x component of the E field, you would have something like $$ (\nabla \cdot \textbf{E})_x = \partial_x ({E_0}_xe^{-i(k_x x - \omega t)}) = \partial_x {E_0}_x - ik_x {E_0}_xe^{-i(k_x x - \omega t)}$$ which, combined with the other components would give you $$ \nabla \cdot \vec{E_0} - i\vec{k} \cdot \textbf{E} = 0 $$ which clearly isn't what any of the textbooks are saying is the case. Is it just that the divergence of the complex function ##\vec{E_0}## is zero? If so, why is that the case? Where am I going wrong here? Thanks!
 
Physics news on Phys.org
##\vec E_0## is an amplitude, a constant for the plane waves you describe.
 
Ah okay, I buy that, thanks! Related question though; ##\vec{E_0}## is defined as $$\vec{E_0}=\textbf{A}_1 + i\textbf{A}_2,$$ where ##\textbf{A}_2## and ##\textbf{A}_2## are in ##\mathbb{R}^3##. In a later proof, my professor makes the claim that $$\vec{k} \cdot \textbf{A}_1 = \vec{k} \cdot \textbf{A}_2 = 0.$$ Now, just by simple substitution into ##\vec{k} \cdot \vec{E_0} = 0## would this not imply only that ##\vec{k} \cdot \textbf{A}_1 = - \vec{k} \cdot \textbf{A}_2##? I don't see why we would assume that both dot products are individually zero.
 
Well, if ##\vec k## is real, then ##
\vec{k} \cdot \vec{E_0} = \vec{k} \cdot ( \textbf{A}_1 + i\textbf{A}_2) = 0 + i 0## implies ##\vec{k} \cdot \textbf{A}_1 = \vec{k} \cdot \textbf{A}_2 = 0 ## and you are in business. Is ##\vec k_0## real ? why (or: why not) ?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top