Hi Chet, am I correct in saying -
"If the truncation error on the advection term in the upwind scheme is the same as the dispersion term in the central differencing scheme (when l = delta x/2), then the numerical dispersion associated with the upwind scheme will be equal to the physical dispersion in the central differencing scheme"
I'm having a bit of trouble proving that they are the same mathematically. Working on it though. Just checking that I have the right idea.
Heres what I've attempted so far:
Central Differencing Scheme (CDS) Dispersion Term:
\begin{equation*}
l \frac{\phi_{x+\Delta x/2} (h_{x+\Delta x} - h_x) - \phi_{x-\Delta x/2} (h_x - h_{x-\Delta x})}{\Delta x^2}
\end{equation*}
Upwind Scheme (US) Advection Term:
\begin{equation*}
\frac{\phi_{x-\Delta x/2} h_{x-\Delta x} - \phi_{x+\Delta x/2} h_x}{\Delta x}
\end{equation*}
To determine the truncation error for the advection term in the Upwind Scheme, we can use the Taylor Series expansion around x:
Expanding (h_{x-\Delta x}) using the Taylor series:
\begin{equation*}
h_{x-\Delta x} = h_x - \Delta x \frac{\partial h}{\partial x} + \frac{\Delta x^2}{2} \frac{\partial^2 h}{\partial x^2} - \dots
\end{equation*}
Substituting this into the US advection term and simplifying I think should give the truncation error term:
\begin{equation*}
\frac{\Delta x}{2} \frac{\partial^2 h}{\partial x^2}
\end{equation*}
However I havent been able to get this yet. If I did, then I'd equate this truncation error with the dispersion term in CDS when (##l = \frac{\Delta x}{2}##).
With (##l = \frac{\Delta x}{2}##), the dispersion term in CDS becomes:
\begin{equation*}
\frac{\Delta x}{2} \frac{\partial^2 h}{\partial x^2}
\end{equation*}
This term is the same as the truncation error from the US. This indicates that when ##(l = \frac{\Delta x}{2})##, the truncation error in the upwind scheme is equivalent to the physical dispersion modeled by the CDS.
Is this the right track?