Relating final speed of electron to its charge mass and voltage difference

AI Thread Summary
The discussion focuses on deriving an expression for the final speed of electrons after passing through a voltage difference, specifically 120 kV. The initial equation presented is v = √(2QΔV/m), where Q is the charge of the electron and m is its mass. Participants emphasize the importance of unit conversions, particularly changing kV to V and ensuring charge is in coulombs to maintain consistency with energy units. Clarifications are made regarding the placement of mass in the equation, with a reminder that energy in joules relates to the base units of kilograms, meters, and seconds. The conversation concludes with encouragement and acknowledgment of progress in understanding the calculations.
franbella
Messages
3
Reaction score
0
Assuming that the speed of the electrons is zero as they are emitted from the filament and that as they reach the anode it is v, find an expression relating the final speed v to the charge on an electron, the mass of an electron and deltaV, and hence calculate the speed v of the electrons after passing through a voltage difference of 120 kV.


I'm new to this, but the equation I have come up with is
v = √ 2QΔV
m

I then get this:

√ 2 x (1.602 x 10-19J) x (120-0 x 103eV) = √ 3.8448 x 10-14
8.2 x 10-14 J 8.2 x 10-14 J
√0.46887804 = 0.6847466977
To two significant figures and in scientific notation this is 6.8 x 10-1 eV s-1

I think I'm tying myself in knots - please help!
 
Physics news on Phys.org
You should divide by the mass under the square root, and do care about the units.
 
Sorry, my first post doesn't make it look like this because my m is not under the square root, but it should be - just an error with copy and paste. So I did do this, but I still feel lost. Is the equation I'm using applicable - the number's I've come up with don't seem right.
 
i noticed that in your original formula you put the m. What i meant was that when you put in the numbers i don't see you dividing by m.
 
franbella said:
of the electrons after passing through a voltage difference of 120 kV.


I'm new to this, but the equation I have come up with is
v = √ 2QΔV
m

I then get this:

√ 2 x (1.602 x 10-19J) x (120-0 x 103eV)

Little hard to see from post but remember to change kV into V and charge is in C. Therefore C x V = J, base units of J= kg m2 s-2.

kg m2 s-2
kg

= m2 s-2

square root of m2 s-2 = m s-1

Hope this helped.
 
Thank you - good reminder - I always forget. Think am getting somewhere now.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top