Rolling Wheel / quick question -- Linear and Angular Velocity

AI Thread Summary
In a rolling wheel, the point of contact with the ground has zero velocity, confirming that there is no slipping at that point. While the linear velocity of the wheel is defined by the motion of its center, each point on the rim has its own instantaneous linear velocity due to the wheel's rotation. The tangential velocity varies across the wheel, being the same for all points on the rim but not for all points on the wheel. The confusion arises from the distinction between the wheel's overall linear motion and the individual velocities of points on the wheel. Understanding these concepts clarifies why the correct answer to the question is E.
gcombina
Messages
157
Reaction score
3

Homework Statement


Which statement concerning a wheel undergoing rolling motion is true
(a) The angular acceleration of the wheel must be zero m/s2.
(b) The tangential velocity is the same for all points on the wheel.
(c) The linear velocity for all points on the rim of the wheel is non-zero.
(d) The tangential velocity is the same for all points on the rim of the wheel.
(e) There is no slipping at the point where the wheel touches the surface on which it is rolling

Homework Equations

The Attempt at a Solution



Answer is E
but why not C? this wheel is in angular velocity so that does mean that linear velocity is zero?
 
Physics news on Phys.org
No isn't the linear velocity of the wheel just the motion of the center of the wheel. All points on the rim of the wheel don't move linearly right? Am I wrong?
 
gcombina said:
but why not C?
At a given instant, consider the point that is in contact with the ground. Does it have any velocity? If so, which way?
velo city said:
isn't the linear velocity of the wheel just the motion of the center of the wheel.
That's the linear velocity of the wheel as a whole, but each bit of the wheel has its own instantaneous linear velocity.
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top