Static Friction on an Inclined Plane: Force = mgsin30

AI Thread Summary
A block of mass m on a 30º inclined plane experiences static friction and weight as the only forces acting on it. The equilibrium condition states that the net force is zero, leading to the equation 0 = fs - mgsin30. This results in the conclusion that the force of static friction equals mgsin30. Therefore, the correct statement regarding static friction in this scenario is that fs = mg sin 30º. The discussion confirms that option D is the accurate answer.
StephenDoty
Messages
261
Reaction score
0
A block of mass m is at rest on an inclined plane that makes an angle of 30º with the
horizontal, as shown in the figure. Which of the following statements about the force of
static friction is true?
A) fs > mg D)fs = mg sin 30º
B) fs > mg cos 30º E) None of these statements is true.
C) fs = mg cos 30º

because the only two forces acting on the block is fs and weight, F=0 since at rest, thus 0=fs - mgsin30 so
fs= mgsin30


So the answer is D right??
 
Physics news on Phys.org
Yes. Very good.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top