The net electric field at point A is 6.7x10^4Nm.

Click For Summary
SUMMARY

The net electric field at point A is calculated to be 6.7 x 104 Nm. This value is derived from the contributions of two charges, where charge 1 (q1) has a magnitude of -6.0 x 10-5 C and charge 2 (q2) has a magnitude of -3.0 x 10-5 C, both located 3.0 m from point A. The calculations involve using Coulomb's constant (k = 9.0 x 109 Nm2/C2) and applying the formula Enet = kq/r2 for each charge, followed by vector addition of the electric field components.

PREREQUISITES
  • Understanding of electric fields and Coulomb's law
  • Familiarity with vector addition of forces
  • Knowledge of the concept of electric field direction based on charge polarity
  • Basic proficiency in algebra and square root calculations
NEXT STEPS
  • Study vector addition of electric fields in different configurations
  • Learn about the implications of charge polarity on electric field direction
  • Explore the concept of electric field lines and their representations
  • Investigate the effects of multiple charges on net electric fields
USEFUL FOR

Students studying electromagnetism, physics educators, and anyone seeking to understand electric field calculations in non-equilateral charge configurations.

chef99
Messages
75
Reaction score
4

Homework Statement


Calculate the net electric field at point A.

unnamed.jpg

Homework Equations


Enet(total)

The Attempt at a Solution


[/B]
The electric field at point A will due to charge 2 will point towards charge 2 because charge 2 is negative.
The electric field at point A will due to charge 1 will point towards charge 1 because charge 1 is negative.

Enet(total) = Enetx + Enety
Because q1 is vertical, its x-component is 0. Because q2 is horizontal, its y-component is 0. Therefore,

Enet = kq1/r^2 + kq2/r^2

= (9.0x10^9Nm/C)(-6.0x10^-5C) / (3.0m)^2 + (9.0x10^9Nm/C)(-3.0x10^-5 C) / (3.0m)^2
= -60000Nm
= -6.0x10^4Nm
The electric field at point A due to the other charges is -6.0x10^4Nm


I am unsure if this is correct as this is the first time I've done a question when it hasn't been an equilateral triangle, so I don't know if I have the right idea or not. Also, I am unsure if I need to determine the angle of charge A or not. Any help is greatly appreciated.

**I am new to the forum so apologies for any errors in the format of my question.
 

Attachments

  • unnamed.jpg
    unnamed.jpg
    12.4 KB · Views: 775
Physics news on Phys.org
chef99 said:
Enet = kq1/r^2 + kq2/r^2

Do you know that Electric field is a vector, and so you have to add it vectorially?
 
PumpkinCougar95 said:
Do you know that Electric field is a vector, and so you have to add it vectorially?
I know the field is a vector, but do I still have to do the x- and y-components first if the direction of the two charges fall on the vertical and horizontal axis, as they appear in the diagram? i.e. Would the x-component for q1 not be zero?
 
Q1 will contribute no x component, Q2 will contribute no y component. But You have to Add them like $$ E_{net} ~=~\sqrt{ {E_x}^2+ {E_y}^2 } $$
 
  • Like
Likes   Reactions: chef99
PumpkinCougar95 said:
Q1 will contribute no x component, Q2 will contribute no y component. But You have to Add them like $$ E_{net} ~=~\sqrt{ {E_x}^2+ {E_y}^2 } $$

So Enet = √60000Nm^2 + 30000Nm^2

Enet = 67082
Enet = 6.7 x10^4Nm
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
997
  • · Replies 68 ·
3
Replies
68
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K