The net electric field at point A is 6.7x10^4Nm.

Click For Summary

Homework Help Overview

The discussion revolves around calculating the net electric field at a specific point A due to two charges, with a focus on understanding vector addition of electric fields. The subject area is electrostatics, specifically the behavior of electric fields generated by point charges.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the vector nature of electric fields and the necessity of considering components in calculations. Questions arise regarding the contributions of each charge to the electric field's components and whether the geometry of the setup affects the approach.

Discussion Status

Some participants have provided guidance on the need to add electric fields vectorially and have clarified the contributions of the charges to the x and y components. There is ongoing exploration of the correct method to calculate the net electric field, with participants questioning assumptions about the components based on the arrangement of the charges.

Contextual Notes

There is uncertainty regarding the setup of the problem, particularly the arrangement of the charges and whether angles need to be considered. The original poster expresses hesitation due to the unfamiliarity of the configuration compared to previous problems.

chef99
Messages
75
Reaction score
4

Homework Statement


Calculate the net electric field at point A.

unnamed.jpg

Homework Equations


Enet(total)

The Attempt at a Solution


[/B]
The electric field at point A will due to charge 2 will point towards charge 2 because charge 2 is negative.
The electric field at point A will due to charge 1 will point towards charge 1 because charge 1 is negative.

Enet(total) = Enetx + Enety
Because q1 is vertical, its x-component is 0. Because q2 is horizontal, its y-component is 0. Therefore,

Enet = kq1/r^2 + kq2/r^2

= (9.0x10^9Nm/C)(-6.0x10^-5C) / (3.0m)^2 + (9.0x10^9Nm/C)(-3.0x10^-5 C) / (3.0m)^2
= -60000Nm
= -6.0x10^4Nm
The electric field at point A due to the other charges is -6.0x10^4Nm


I am unsure if this is correct as this is the first time I've done a question when it hasn't been an equilateral triangle, so I don't know if I have the right idea or not. Also, I am unsure if I need to determine the angle of charge A or not. Any help is greatly appreciated.

**I am new to the forum so apologies for any errors in the format of my question.
 

Attachments

  • unnamed.jpg
    unnamed.jpg
    12.4 KB · Views: 781
Physics news on Phys.org
chef99 said:
Enet = kq1/r^2 + kq2/r^2

Do you know that Electric field is a vector, and so you have to add it vectorially?
 
PumpkinCougar95 said:
Do you know that Electric field is a vector, and so you have to add it vectorially?
I know the field is a vector, but do I still have to do the x- and y-components first if the direction of the two charges fall on the vertical and horizontal axis, as they appear in the diagram? i.e. Would the x-component for q1 not be zero?
 
Q1 will contribute no x component, Q2 will contribute no y component. But You have to Add them like $$ E_{net} ~=~\sqrt{ {E_x}^2+ {E_y}^2 } $$
 
  • Like
Likes   Reactions: chef99
PumpkinCougar95 said:
Q1 will contribute no x component, Q2 will contribute no y component. But You have to Add them like $$ E_{net} ~=~\sqrt{ {E_x}^2+ {E_y}^2 } $$

So Enet = √60000Nm^2 + 30000Nm^2

Enet = 67082
Enet = 6.7 x10^4Nm
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 68 ·
3
Replies
68
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K